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Resumo

Marcelo Machado Lage. Sobre uma conjectura de Erdős acerca de grafos livres de
triângulos. Monografia (Bacharelado). Instituto de Matemática, Estatística e Ciência da
Computação, Universidade de São Paulo, São Paulo, 2025.

Grafos livres de triângulos são objetos de grande importância na Teoria Extremal dos Grafos. O clássico
Teorema de Mantel mostra o limite para o número máximo de arestas que um tal grafo pode ter, e, a partir
da década de 1960, perguntas mais desafiadoras vêm sendo postas relacionadas a grafos livres de triângulos.
Nesse trabalho, investigamos questões de estabilidade em grafos livres de triângulos e, particularmente, uma
conjectura proposta por Erdős em 1975 sobre a distância entre grafos livres de triângulos e grafos bipartidos.

Inicialmente, apresentamos resultados parciais para a conjectura utilizando técnicas clássicas em Teoria
Extremal dos Grafos. Em seguida, apresentamos duas técnicas modernas que têm sido usadas para avançar em
conjecturas sobre grafos livres de triângulos: as álgebras de flag de Razborov, que permitem automatizar certas
estratégias de prova que generalizam os métodos clássicos usando cortes locais; teoremas de homomorfismos
em grafos com restrição de grau mínimo, que facilitam o estudo de objetos complexos a partir de uma
perspectiva mais simples. Por fim, obtemos avanços parciais na conjectura principal utilizando esses dois
métodos, que se complementam pela força expressiva e versatilidade computacional das álgebras de flag
e pela simplificação estrutural dos teoremas de homomorfismos.

Palavras-chave: Grafos. Combinatória. Álgebras de flag.





Abstract

Marcelo Machado Lage. On a conjecture by Erdős about triangle-free graphs.
Capstone Project Report (Bachelor). Institute of Mathematics, Statistics and Computer
Science, University of São Paulo, São Paulo, 2025.

Triangle-free graphs are objects of great importance in Extremal Graph Theory. A classic result by
Mantel establishes the limit for the maximum number of edges a triangle-free graph can have. Starting in the
1960s, more challenging questions have been posed about such graphs. In this work, we investigate stability
questions related to triangle-free graphs, particularly a conjecture proposed by Erdős in 1975 regarding
the distance between triangle-free graphs and bipartite graphs.

Initially, we present partial results to the conjecture using classical techniques in Extremal Graph Theory.
Then, we present and apply two modern techniques to advance the conjecture: Razborov’s flag algebras,
which allow for the automatization of certain proof strategies that generalize the classical methods using
local cuts, and homomorphism theorems in graphs with minimum degree restrictions, which facilitate the
study of complex objects by offering a simpler perspective. We obtain partial results for the conjecture using
both methods, which complement each other through the expressive power and computational versatility of
the flag algebras and the structural simplification afforded by the homomorphism theorems.

Keywords: Graphs. Combinatorics. Flag algebras.
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Introdução

Uma das perguntas mais fundamentais em Teoria Extremal dos Grafos é “qual o
maior número possível de arestas em um grafo com 𝑛 vértices sem cópias de 𝐻 como
subgrafo?” Os celebrados teoremas de Turán e Erdős-Stone, e Erdős-Kovari-Sós dão res-
postas complementares para essa pergunta quantitativa, e muitas vezes (como no caso dos
dois primeiros) fornecem também respostas qualitativas. De fato, se 𝐻 não é bipartido, o
Teorema de Erdős-Stone diz que um grafo que atinja a cota superior deve se aproximar de
um grafo (𝜒(𝐻) − 1)-partido, onde 𝜒(𝐻) é o número cromático de 𝐻. Para mais detalhes,
recomendamos o livro [4].

A resposta (numérica e estrutural) para essa pergunta no caso em que 𝐻 é um triângulo
é um dos resultados mais antigos em Teoria Extremal dos Grafos, tendo sido provado
por Mantel em 1907: um grafo com 𝑛 vértices sem triângulos possui no máximo 𝑛2/4
arestas, e se a cota é atingida com igualdade, então 𝐻 é bipartido. A partir das décadas de
1960 e 1970, com o trabalho de Erdős, Simonovits, Andrásfai e outros, a interação entre
restrições numéricas e restrições estruturais em grafos introduz perguntas diversas, entre
elas o estudo da estabilidade.

A estabilidade se refere justamente ao comportamento de grafos que, próximos ao
limiar para o qual uma propriedade acontece, se aproximam de um exemplo “extremal”.
Para o Teorema de Mantel, uma pergunta geral que se pode fazer é “quão próximo de
ser bipartido um grafo livre de triângulos pode estar”? Em 1975, Erdős conjecturou que
todo grafo livre de triângulos com 𝑛 vértices pode ser tornado bipartido deletando no
máximo 𝑛2/25 das suas arestas.

O caso geral dessa conjectura permanece em aberto até a data da conclusão deste texto.
Neste trabalho, realizamos um estudo da conjectura, dos resultados clássicos provados
em direção a estabilidade em grafos livres de triângulos e posteriormente apresentamos e
empregamos duas ferramentas modernas (álgebras de flag e teoremas de homomorfismos
relacionados a condições de grau mínimo) para obter avanços parciais na direção do caso
geral da conjectura.

Estrutura do trabalho

Organizamos os capítulos subsequentes como segue.

• No Capítulo 1, introduzimos alguns conceitos e fixamos a notação que será utilizada
ao longo deste trabalho.
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• No Capítulo 2, discutimos uma breve história do problema e resultados parciais
clássicos.

• No Capítulo 3, apresentamos as álgebras de flag e a técnica de cortes locais para
obter resultados numéricos na direção da conjectura principal.

• No Capítulo 4, discutimos teoremas de homomorfismos e a conjectura principal para
grafos de grau mínimo alto.

• No Capítulo 5, discutimos brevemente os resultados obtidos e direções futuras de
pesquisa.
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Capítulo 1

Preliminares

Um grafo 𝐺 é um par de conjuntos finitos (𝑉 , 𝐸), onde 𝑉 é o conjunto de vértices de
𝐺, e 𝐸 é o conjuntos de arestas (pares não ordenados de vértices). Escrevemos 𝑣(𝐺) (ou
|𝐺|) e 𝑒(𝐺) para representar a cardinalidade de 𝑉 e 𝐸, respectivamente. Dado um grafo 𝐺,
usamos 𝑉 (𝐺) e 𝐸(𝐺) para representar seu conjunto de vértices e arestas, respectivamente.
Escrevemos, por simplicidade, 𝑢𝑣 (ou 𝑣𝑢) para denotar a aresta {𝑢, 𝑣} ∈ 𝐸(𝐺). Se a aresta 𝑢𝑣
é um elemento de 𝐸(𝐺), então dizemos que 𝑢 e 𝑣 são vizinhos (em 𝐺). A vizinhança de 𝑣 (em
𝐺) é definida como 𝑁𝐺(𝑣) ≔ {𝑢 ∈ 𝑉 (𝐺) ∶ 𝑢𝑣 ∈ 𝐸(𝐺)}, e o grau de 𝑣 (em 𝐺) é definido como
𝑑𝐺(𝑣) ≔ |𝑁𝐺(𝑣)|. Quando estiver claro a que grafo 𝐺 estamos nos referindo, escrevemos
simplesmente 𝑁(𝑣) e 𝑑(𝑣). Definimos o grau mínimo de 𝐺 como min𝑣∈𝑉 (𝐺) 𝑑𝐺(𝑣). Dizemos
que 𝐺 é 𝑑-regular se 𝑑𝐺(𝑣) = 𝑑 para todo 𝑣 ∈ 𝑉 (𝐺).

Um grafo 𝐻 é dito subgrafo de um grafo 𝐺 e escrevemos 𝐻 ⊆ 𝐺 se 𝑉 (𝐻) ⊆ 𝑉 (𝐺) e
𝐸(𝐻) ⊆ 𝐸(𝐺) ∩ (𝑉 (𝐻)

2 ). Ademais, se 𝑉 (𝐺) = 𝑉 (𝐻), dizemos que 𝐻 é um subgrafo gerador
de 𝐺. Se um grafo 𝐺 não contém nenhum subgrafo isomorfo a 𝐻, dizemos que 𝐺 é livre de
𝐻 ou 𝐻-livre. Para qualquer família ℋ de grafos, dizemos que 𝐺 é livre de ℋ ou ℋ-livre
se 𝐺 é 𝐻-livre para cada 𝐻 ∈ ℋ. Dado um subconjunto 𝑆 ⊆ 𝑉 (𝐺), denotamos por 𝐺[𝑆] o
grafo (𝑆, 𝐸(𝐺) ∩ (𝑆2)). Para cada 𝑆 ⊆ 𝑉 (𝐺), definimos 𝐺 − 𝑆 ≔ 𝐺[𝑉 (𝐺) ∖ 𝑆], e para cada
𝐹 ⊆ 𝐸(𝐺), definimos 𝐺 − 𝐹 ≔ (𝑉 (𝐺), 𝐸(𝐺) ∖ 𝐹).

Dizemos que um subconjunto 𝑆 ⊆ 𝑉 (𝐺) é independente (em 𝐺) se 𝐺[𝑆] não possui
nenhuma aresta. Um grafo com 𝑛 vértices e (𝑛2) arestas é chamado de completo. O grafo
completo com conjunto de vértices {1, 2, … , 𝑛} é denotado 𝐾𝑛. Definimos o k-ciclo 𝐶𝑘 como o
grafo com conjunto de vértices [𝑛] ≔ {1, 2, … , 𝑛} e conjunto de arestas {{1, 2}, {2, 3}, … , {𝑘 −
1, 𝑘}, {𝑘, 1}}.

Se 𝐺 é um grafo tal que 𝑉 (𝐺) admite uma partição {𝐴1, 𝐴2, … , 𝐴𝑟} em que cada 𝐴𝑖 é
um conjunto independente em 𝐺, então dizemos que 𝐺 é 𝑟-partido, e (𝐴1, 𝐴2, … , 𝐴𝑟) é uma
𝑟-partição de 𝐺. Cada 𝐴𝑖 é chamado de uma classe da 𝑟-partição. Dizemos que 𝐺 é 𝑟-partido
completo se 𝐸(𝐺) = ∪1≤𝑖<𝑗≤𝑟𝐺 [𝐴𝑖 ∪ 𝐴𝑗]. Um grafo 2-partido é chamado de bipartido, e uma
2-partição de bipartição. O menor 𝑟 tal que 𝐺 é 𝑟-partido é chamado de número cromático
de 𝐺 e denotado 𝜒(𝐺).

Um conceito importante nessa pesquisa é o de um blow-up 𝐺 de um grafo 𝐻, que é
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um grafo 𝐺 em que, para cada 𝑣 ∈ 𝑉 (𝐻), existe 𝑆𝑣 ⊆ 𝑉 (𝐺) tal que

• {𝑆𝑣 ∶ 𝑣 ∈ 𝑉 (𝐻)} é uma partição de 𝑉 (𝐻), e

• Para cada 𝑥𝑦 ∈ 𝐸(𝐺) e 𝑢, 𝑣 ∈ 𝑉 (𝐻), vale que (𝑥, 𝑦) ∈ 𝑆𝑢 × 𝑆𝑣 ⟺ 𝑢𝑣 ∈ 𝐸(𝐻).

Um blow-up é dito balanceado se todos os conjuntos 𝑆𝑣 têm a mesma cardinalidade. Se
um grafo 𝐺 é subgrafo de um blow-up de um grafo 𝐻, dizemos que 𝐺 é homomórfico a
𝐻, e escrevemos 𝐺 ↪ 𝐻.
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Capítulo 2

Resultados clássicos

Nesse capítulo, apresentaremos resultados clássicos sobre grafos livres de triângulos,
bem como enunciamos a conjectura que iremos explorar nos demais capítulos deste
trabalho.

2.1 Estabilidade em grafos livres de triângulos

Historicamente, um dos primeiros resultados provados no que futuramente viria a ser
conhecido como Teoria Extremal dos Grafos é o Teorema de Mantel.

Teorema 2.1 ([23]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices. Então 𝑒(𝐺) ≤ ⌊𝑛2/4⌋.
Além disso, 𝑒(𝐺) = ⌊𝑛2/4⌋ se, e somente se, 𝐺 é um grafo bipartido completo em que uma das
classes tem tamanho ⌊𝑛/2⌋, e a outra tem tamanho ⌈𝑛/2⌉.

Omitimos a prova do Teorema 2.1 nessa seção. No Capítulo 3, apresentaremos uma
prova do Teorema 2.1 usando ferramentas modernas de Teoria Extremal dos Grafos, que
servirá de motivação para o restante do Capítulo 3. De toda forma, provas elementares do
Teorema 2.1 podem ser encontradas nas referências básicas da área (ver [4]).

O Teorema 2.1 impõe uma restrição bastante forte sobre grafos livres de triângulos
muito densos (isto é, grafos com muitas arestas). Ao mesmo tempo que se permite que um
grafo livre de triângulos tenha aproximadamente metade das arestas “disponíveis” (uma
vez que o número máximo de arestas possíveis em um grafo com 𝑛 vértices é (𝑛2) ≈ 2⋅ 𝑛

2

4 ), ele
impõe uma forte restrição estrutural sobre tais grafos: para cada 𝑛, existe essencialmente
um único grafo livre de triângulos com 𝑛 vértices e 𝑒(𝐺) = ⌊𝑛2/4⌋.

De forma paralela, podemos pensar em formas gerais de descrever grafos livres de
triângulos e maximizar o número de arestas disponíveis. Por exemplos, os grafos bipartidos
são claramente livres de triângulos, pois para quaisquer três vértices do grafo há dois
na mesma parte pelo Princípio da Casa dos Pombos, e tais dois vértices não fazem parte
de um triângulo pois não são vizinhos. Além disso, um grafo bipartido 𝐺 com bipartição
𝑉 (𝐺) = 𝐴 ∪ 𝐵 possui, no máximo |𝐴||𝐵| = |𝐴|(𝑛 − |𝐴|) ≤ ⌊𝑛2/4⌋ arestas, com igualdade
se e somente se {|𝐴|, |𝐵|} = {⌊𝑛/2⌋, ⌈𝑛/2⌉}.
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Em conclusão, observa-se uma relação muito próxima entre a família de grafos livres
de triângulos densos e a família de grafos bipartidos, e o Teorema 2.1 sugere uma aproxi-
mação entre as duas famílias quando a densidade do grafo aumenta. É portanto natural
se perguntar se se estende tal analogia entre as duas classes de grafos: quão “distante”
pode estar um grafo livre de triângulos de ser bipartido? A noção de distância que iremos
utilizar é formalizada pela definição a seguir:

Definição 2.2. Seja 𝐺 um grafo. Definimos 𝐷(𝐺) como o menor tamanho de um conjunto
de arestas 𝐹 ⊆ 𝐺 tal que 𝐺 − 𝐹 ≔ (𝑉 (𝐺), 𝐸(𝐺) ∖ 𝐹) é bipartido.

O próximo resultado é um teorema clássico de estabilidade, e dá uma resposta inicial
para a nossa pergunta.

Teorema 2.3 ([28]). Seja 𝑚 ≥ 0 um inteiro e seja 𝐺 um grafo livre de triângulos com 𝑛
vértices e 𝑛2

4 − 𝑚 arestas. Então 𝐷(𝐺) ≤ 𝑚.

O Teorema 2.3 pode ser interpretado como um resultado estrutural: quanto mais arestas
queremos que um grafo livre de triângulos tenha, mais restrita será a estrutura desse grafo.
Esse paradigma voltará no Capítulo 4, quando em vez de usarmos o número de arestas para
parametrizar a densidade de grafos livres de triângulos, usarmos o seu grau mínimo.

A prova do Teorema 2.3 pode ser encontrada no Capítulo 3 de [4], mas os métodos
utilizados na prova do Teorema de Mantel que apresentaremos no Capítulo 3 permitem
obter resultados similares de estabilidade. Mais resultados relacionados a estabilidade em
grafos podem ser vistos em [16, 18, 29].

Para grafos com apenas poucas arestas a menos que 𝑛2/4, o Teorema 2.3 fornece uma
cota superior satisfatória para𝐷(𝐺). Em 1975, Erdős propôs a seguinte conjectura para uma
cota incondicional sobre𝐷(𝐺), no sentido que ela não depende do número de arestas de 𝐺.

Conjectura 2.4 ([11]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices. Então

𝐷(𝐺) ≤ 𝑛2

25
.

A Conjectura 2.4 permanece em aberto no caso geral. Observe que o Teorema 2.3 prova
a Conjetura 2.4 para grafos com pelo menos 21𝑛2/100 arestas. Além disso, se verdadeira,
a cota 𝑛2/25 é ótima, pois um blow-up balanceado 𝐺 de 𝐶5 (ver Figura 2.1) com 𝑛 = 5𝑚
vértices e 𝑚 vértices em cada classe satisfaz 𝐷(𝐺) = 𝑚2 = 𝑛2/25. É fácil ver que 𝐺 é livre
de triângulos e 𝐷(𝐺) ≤ 𝑚2, pois ao remover todas as arestas entre um par de classes da
partição o subgrafo restante se torna bipartido. Por outro lado, segue do Teorema 2.6 que
existe uma coleção de “arestas grossas” de 𝐺 cuja remoção deixa 𝐺 bipartido e o total de
arestas removidas é igual a 𝐷(𝐺), ou seja, 𝐷(𝐺) ≥ 𝑚2.

Os blow-ups serão amplamente utilizados nos capítulos a seguir no estudo da Conjec-
tura 2.4. Eles são grafos úteis porque se um grafo (grande) 𝐺 é um blow-up de um grafo
(pequeno) 𝐻, então uma série de comportamentos em 𝐺 “imitam os comportamentos análo-
gos” em 𝐻, e portanto podemos descrever certas propriedades de 𝐺 usando os parâmetros
de 𝐻, que são menos e menores. O Teorema 2.6 abaixo deixará essa utilidade evidente,
mas antes de enunciá-lo e prová-lo precisamos definir de forma precisa a “analogia” entre



2.1 | ESTABILIDADE EM GRAFOS LIVRES DE TRIÂNGULOS

7

Figura 2.1: Blow-up balanceado de 𝐶5

os grafos 𝐺 e 𝐻.

Definição 2.5. Seja 𝐺 um blow-up de 𝐻 e seja 𝑉 (𝐺) = {𝑆𝑣 ∶ 𝑣 ∈ 𝑉 (𝐻)} uma partição de 𝐻
que satisfaz a definição de blow-up. Dizemos que 𝐹𝐺 ⊆ 𝐸(𝐺) é canônico se existe 𝐹𝐻 ⊆ 𝐻
tal que

𝐹𝐺 = ⋃
𝑢𝑣∈𝐹𝐻

𝐸(𝐺[𝑆𝑢 ∪ 𝑆𝑣]).

Em outras palavras, um conjunto canônico de arestas é tal que, entre cada par de classes
de 𝑉 (𝐺), ou adicionamos todas as arestas entre essas classes para o conjunto, ou não
adicionamos nenhuma dessas arestas.

É prudente observar que a definição de um conjunto canônico depende da escolha
da partição de 𝑉 (𝐺) (que não necessariamente é única). Em geral, essa escolha será clara
do contexto.

Teorema 2.6 ([14]). Seja 𝐻 um grafo livre de triângulos e seja 𝐺 um blow-up de 𝐻. Então
existe 𝐹 ⊆ 𝐸(𝐺) canônico tal que |𝐹 | = 𝐷(𝐺) e 𝐺 − 𝐹 é bipartido.

Demonstração. A prova usa um procedimento conhecido como simetrização de Zykov. Em
linhas gerais, a ideia é que se 𝑢 e 𝑣 estão na mesma parte e 𝑑𝑍(𝑢) ≥ 𝑑𝑍(𝑣) para um certo
subgrafo bipartido 𝑍 de 𝐺, então trocar a vizinhança de 𝑣 em 𝑍 para 𝑁𝑍(𝑢) não muda a
propriedade de 𝑍 ser bipartido, não diminui o número de arestas de 𝑍 e o torna mais
“simétrico” de forma que esse procedimento pode ser realizado apenas finitamente.

Seja 𝑍 um subgrafo gerador de 𝐺 tal que 𝑍 é bipartido e 𝑒(𝐺) − 𝑒(𝑍0) = 𝐷(𝐺). Vamos
definir 𝑍0 ≔ 𝑍 e modificar 𝑍0 sem diminuir seu número de arestas e garantindo que a
propriedade da bipartição é mantida. Para isso, ordene as classes do blow-up 𝐻 como
𝑉 (𝐺) = {𝑆1, 𝑆2, … , 𝑆𝑛} e aplique a seguinte operação sequencialmente para cada 𝑖 ∈ [𝑛]:

• Tome 𝑥 ∈ 𝑆𝑖 com grau máximo em 𝑍𝑖−1;

• Para cada 𝑦 ∈ 𝑆𝑖 ∖ {𝑥}, forme 𝑍𝑖 substituindo a vizinhança de 𝑦 em 𝑍𝑖−1 por 𝑁𝑍(𝑥).

Perceba que pela maximalidade de 𝑁𝑍𝑖−1(𝑥), o número de arestas do grafo não diminui
a cada substituição de vizinhanças. Além disso, a propriedade da bipartição é mantida:
depois de substituir a vizinhança de 𝑦, coloque 𝑦 na mesma classe da bipartição que contém
𝑥.
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Em 𝑍𝑛, todos os pares 𝑥, 𝑦 pertencendo à mesma parte de {𝑆1, 𝑆2, … , 𝑆𝑛} terão a mesma
vizinhança. Além disso, se 𝑥𝑦 ∈ 𝐸(𝑍𝑛) com 𝑥 ∈ 𝑆𝑢 e 𝑦 ∈ 𝑆𝑣, então 𝑥′𝑦 ∈ 𝐸(𝑍𝑛) para
cada 𝑥′ ∈ 𝑆𝑢 (pela simetria em 𝑆𝑢) e 𝑥𝑦 ′ ∈ 𝐸(𝑍𝑛) para cada 𝑦 ′ ∈ 𝑆𝑣 (pela simetria em
𝑆𝑣). Dessa forma, 𝐹 ≔ 𝐸(𝐻) ∖ 𝐸(𝑍 ′) é um conjunto canônico de arestas de cardinalidade
𝑒(𝐻) − 𝑒(𝑍𝑛) ≤ 𝑒(𝐻) − 𝑒(𝑍0) = 𝐷(𝐻). Pela definição de 𝐷(𝐻), segue que a igualdade vale,
e |𝐹 | = 𝐷(𝐻), como desejado.

2.2 Avanços parciais na Conjectura 2.4

Ao longo dos anos, as tentativas de resolução da Conjectura 2.4 levaram a importantes
resultados parciais, e existem duas formas principais de obter resultados parciais na
direção da Conjectura 2.4: restringindo a família de grafos 𝐺 (por exemplo, a um número
máximo/mínimo de arestas) ou provando cotas mais fracas para 𝐷(𝐺). O seguinte teorema
foi usado para obter resultados parciais nas duas condições (Corolário 2.8 e Teorema 2.9).

Teorema 2.7 ([13]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices e 𝑚 arestas. Então

𝐷(𝐺) ≤ min {𝑚 − 4𝑚2

𝑛2
, 𝑚
2
−
2𝑚(2𝑚2 − 𝑛3)
𝑛2(𝑛2 − 2𝑚)

}

Demonstração. A prova da desigualdade 𝐷(𝐺) ≤ 𝑚 − 4𝑚2/𝑛2, bem como a ideia principal
por trás da contagem que leva à cota 𝐷(𝐺) ≤ 𝑚/2 − 2𝑚(2𝑚2 − 𝑛3)/𝑛2(𝑛2 − 2𝑚), serão
generalizadas na Seção 3.2.1. Por ora, provaremos apenas 𝐷(𝐺) ≤ 𝑚 − 4𝑚2/𝑛2, utilizando
um argumento simples de contagem que incorpora importantes propriedades de grafos
livres de triângulos, as quais usaremos para localizar subgrafos bipartidos grandes.

Para cada vértice 𝑣 ∈ 𝑉 (𝐺), defina o conjunto 𝐹𝑣 ≔ 𝑉(𝐺) ∖ 𝑁𝐺(𝑣) (os não vizinhos de
𝑣, incluindo o próprio 𝑣). Note que 𝐷(𝐺) ≤ |𝐹𝑣| para qualquer vértice 𝑣, pois a bipartição
{𝑁𝐺(𝑣), 𝑉 (𝐺) ∖ 𝑁𝐺(𝑣)} possui exatamente |𝐹𝑣| arestas dentro da segunda parte, e a primeira
é independente. Assim, temos que

𝐷(𝐺) ≤ min
𝑣∈𝑉 (𝐺)

|𝐹𝑣| ≤
1
𝑛

∑
𝑣∈𝑉 (𝐺)

|𝐹𝑣|. (2.1)

Observe que se 𝑥𝑦 ∈ 𝐹𝑣, então 𝑣 ∈ 𝑉 (𝐺) ∖ (𝑁𝐺(𝑥) ∪ 𝑁𝐺(𝑦)), logo cada aresta 𝑥𝑦 ∈ 𝐸(𝐺)
pertence a no máximo 𝑛 − 𝑑𝐺(𝑥) − 𝑑𝐺(𝑦) conjuntos 𝐹𝑣. Aplicando essa cota em (2.1), temos

𝐷(𝐺) ≤ 1
𝑛

∑
𝑣∈𝑉 (𝐺)

|𝐹𝑣|

≤ 1
𝑛

∑
𝑥𝑦∈𝐸(𝐺)

(𝑛 − 𝑑𝐺(𝑥) − 𝑑𝐺(𝑦)) = 𝑚 − 1
𝑛

∑
𝑥∈𝑉 (𝐺)

𝑑𝐺(𝑥)2

≤ 𝑚 − (
∑𝑥∈𝑉 (𝐺) 𝑑𝐺(𝑥)

𝑛
)
2

= 𝑚 − 4𝑚2

𝑛2
.
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Corolário 2.8 ([13]). Se 𝐺 é um grafo livre de triângulos com 𝑛 vértices, então 𝐷(𝐺) ≤ 𝑛2/18.

De fato, o resultado de [13] é mais justo: analisando os casos próximos à igualdade,
é possível provar que existe 𝜀 > 0 tal que 𝐷(𝐺) ≤ (1/18 − 𝜀)𝑛2. A análise é direta, mas
não trivial.

Teorema 2.9 ([13]). Para todo 𝑛 inteiro positivo, a Conjectura 2.4 é verdadeira para grafos
com 𝑛 vértices e pelo menos 𝑛2/5 arestas.

O Teorema 2.9 dá uma melhora aparentemente pequena sobre a cota inferior de
𝑒(𝐺) para a qual a Conjectura 2.4 é válida: de 𝑒(𝐺) ≥ 0.21𝑛2 usando o Teorema 2.3 para
𝑒(𝐺) ≥ 0.20𝑛2 usando o Teorema 2.9. Porém, acontece que 𝑒(𝐺) ≥ 𝑛2/5 não é apenas uma
melhora pequena, mas também um “limiar estrutural” para grafos livres de triângulos
longe de serem bipartidos.

Teorema 2.10 ([14]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices e pelo menos 𝑛2/5
arestas. Então existe um grafo 𝐻 ∗ também com 𝑛 vértices tal que 𝐻 ∗ é um blow-up de 𝐶5 e,
além disso, 𝑒(𝐺) ≤ 𝑒(𝐻 ∗) e 𝐷(𝐺) ≤ 𝐷(𝐻 ∗).

É fácil ver que max𝑒(𝐻 ∗)≥𝑚 𝐷(𝐻 ∗) (máximo tomado sobre os blow-ups 𝐻 ∗ de 𝐶5) é
decrescente em 𝑚 para 𝑚 ≥ 𝑛2/5, o que dá uma cota melhor que 𝑛2/5 para 𝑒(𝐺) ≥ 𝑛2/5,
condicionando no valor de 𝑒(𝐺). Do resultado do Teorema 2.10 também segue que o único
exemplo extremal para a Conjectura 2.4 quando 𝑒(𝐺) ≥ 𝑛2/5 são os blow-ups balanceados
de 𝐶5. Não é conhecido nenhum outro exemplo extremal.

Omitiremos a prova completa do Teorema 2.10 e daremos apenas um brevíssimo esboço.
As técnicas utilizadas não serão replicadas em outras partes desse trabalhos e requerem
muitos cuidados com as contas. Os detalhes podem ser encontrados em [14].

Esboço da demonstração do Teorema 2.10. Definimos os dois conjuntos que formam a
“quase bipartição” do grafo de forma algorítmica. Primeiro, escolhemos uma aresta 𝑥𝑦 com
𝑑𝐺(𝑥) + 𝑑𝐺(𝑦) máximo e os conjuntos da bipartição 𝐴1 ≔ 𝑁𝐺(𝑥) e 𝐴2 ≔ 𝑁𝐺(𝑦). Como 𝐺 é
livre de triângulos, cada vértice de 𝐺 pertence a no máximo uma dessa partes. Além disso,
se 𝑒(𝐺) ≥ 𝑛2/5, então é fácil ver que o número de vértices que ainda não tem lado definido
é no máximo 𝑛2/5. Iterativamente, adiciona-se sequencialmente cada um dos vértices
restantes a 𝐴1 ou 𝐴2 de forma a minimizar o número de arestas “monocromáticas” (isso é,
entre vértices da mesma parte) a cada passo. Esses novos vértices formam conjuntos 𝐶1 e
𝐶2, respectivamente.

A partir desse ponto, a prova segue dois caminhos:

• Se existe algum vértice 𝑥0 ∈ 𝐶1∪𝐶2 (suponha sem perda de generalidade que 𝑥0 ∈ 𝐶1)
que tem pelo menos |𝐶1 ∪ 𝐶2| vizinhos em 𝐶1, então é possível definir os tamanhos
das classe de 𝐻 ∗ usando os conjuntos que já temos e as vizinhanças de 𝑥0 em 𝐶1 e
𝐶2. As definições precisas dos tamanhos das classes são omitidas aqui.

• Se não existe tal vértice, então usando conjuntos de arestas duas a duas disjuntas
(de tamanho cotado superiormente) em 𝐴1 ∪ 𝐶1 e em 𝐴2 ∪ 𝐶2, é possível descrever
os tamanhos das classes de 𝐻 ∗ de forma similar. Os detalhes numéricos desse caso
também são omitidos aqui.
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A análise dos casos acima finaliza a prova.

Por fim, apresentamos uma conjectura relacionada à Conjectura 2.4:

Conjectura 2.11 ([11]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices. Então existe
𝑋 ⊆ 𝑉 (𝐺) com 𝑋 = ⌊𝑛/2⌋ tal que 𝑒(𝐺[𝑋]) ≤ 𝑛2/50.

Posteriormente, Erdős ofereceu um prêmio monetário de $ 250 para uma prova ou
contraexemplo da Conjectura 2.11 [12].

Resultados similares ao Teorema 2.9 foram verificados para a Conjectura 2.11 [20]. Além
disso, Krivelevich observou (ver [21]) que a Conjectura 2.11 implica a Conjetura 2.4 para
grafos regulares: se 𝑋 é o conjunto fornecido pela resposta à Conjectura 2.11 para 𝐺, então
𝑒(𝐺[𝑋]) = 𝑒(𝐺[𝑉 (𝐺) ∖ 𝑋]) pela regularidade de 𝐺, e segue que o subgrafo bipartido de 𝐺
induzido pelas partes𝑋 e 𝑉 (𝐺)∖𝑋 tem, nomáximo, 2𝑛2/50 = 𝑛2/25 arestas amenos que𝐺.



11

Capítulo 3

Álgebras de flag

Neste capítulo, introduzimos alguns aspectos do poderoso método de álgebras de flag,
introduzido por Razborov em 2007 [25]. O método tem sido usado de forma diversa para
obter resultados acerca de problemas em combinatória extremal, particularmente pela
sua capacidade expressiva de representar densidades e homomorfismos de estruturas
combinatórias variadas (grafos, grafos orientados, permutações...) Para uma visão histórica
do uso das álgebras de flag e resultados importantes alcançados ainda nos primeiros anos
após a introdução do método, recomendamos [26].

Nesse capítulo, introduzimos a teoria de álgebras de flag aplicada a grafos simples e
densidades de subgrafos. A estrutura é fortemente baseada na exposição de [17] e também
em [8]. Deixamos muitos dos detalhes técnicos das definições de lado em um primeiro
momento, focando em uma abordagem prática que motive a utilização das álgebras de
flag para problemas extremais em grafos livres de triângulos.

3.1 Conceitos iniciais

3.1.1 Densidades

Sejam 𝐹 e𝐺 grafos quaisquer. Definimos a densidade de 𝐹 em𝐺 (denotada 𝑑(𝐹 , 𝐺)) como o
número de subgrafos induzidos de 𝐺 com |𝐹 | vértices que são isomorfos a 𝐹. Analogamente,
𝑑(𝐹 , 𝐺) é a probabilidade que um conjunto de |𝐹 | vértices de 𝐺, escolhido uniformemente
ao acaso, induza um subgrafo isomorfo a 𝐹.

Fixe um grafos 𝐹 e 𝐺 com |𝐹 | ≤ |𝐺|. Para calcular 𝑑(𝐹 , 𝐺), podemos escolher um inteiro
𝑙 com |𝐹 | ≤ 𝑙 ≤ |𝐺| e escrever

𝑑(𝐹 , 𝐺) = ∑
|𝑉 (𝐻)|=𝑙

𝑑(𝐹 , 𝐻)𝑑(𝐻 , 𝐺). (3.1)

A igualdade é válida porque amostrar um subconjunto 𝑆 ⊆ (𝑉 (𝐺)𝑙 ) uniformemente ao acaso
e depois amostrar um subconjunto 𝑇 ⊆ ( 𝑆

|𝐹 |) segue a distribuição uniforme em (𝑉 (𝐺)|𝐹 | ).
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Agora, denote por ℱ ∅
𝑙 a família dos grafos livres de triângulos com 𝑙 vértices (a menos

de isomorfismo). Para a configuração geral de álgebras de flag, a família “proibida” pode
ser qualquer conjunto finito de grafos, que no nosso caso é simplesmente {𝐾3}. Se 𝐺 é um
grafo livre de triângulos, então por (3.1) vale que

𝑑(𝐹 , 𝐺) = ∑
𝐻∈ℱ ∅

𝑙

𝑑(𝐹 , 𝐻)𝑑(𝐻 , 𝐺). (3.2)

Essa expressão é comumente referida como uma regra da cadeia no contexto de álgebras
de flag.

Muitos problemas típicos em Teoria Extremal dos Grafos, como o próprio Teorema de
Mantel, são problemas de minimização de uma expressão do tipo 𝑑(𝐹 , 𝐺), e frequentemente
desejamos utilizar (3.2) para simplificar os cálculos de densidade. Por exemplo, usando
∑𝐻∈ℱ ∅

𝑙
𝑑(𝐻 , 𝐺) = 1 temos 𝑑(𝐹 , 𝐺) ≤ max𝐻∈ℱ ∅

𝑙
𝑑(𝐹 , 𝐻). Essa cota é um resultado “finito”,

pois enquanto 𝐺 é um grafo em geral muito maior que 𝐹, o parâmetro 𝑙 é algo que podemos
tentar controlar para obter resultados mais refinados.

Contudo, essa cota em geral é bastante fraca, e um grande desafio é de gerar desigual-
dades lineares entre densidades que sejam mais sofisticadas que a regra da cadeia. Mais
especificamente, seria interessante ter desigualdades da forma

∑
𝐻∈ℱ ∅

𝑙

𝑐𝐻 ⋅ 𝑑(𝐻 , 𝐺) ≥ 0, (3.3)

onde os 𝑐𝐻’s’ são constantes reais, potencialmente negativas, que possam ser usadas para
balancear as densidades de um e outro subgrafo de 𝐺. Logo, poderíamos obter de (3.2)
a desigualdade

𝑑(𝐹 , 𝐺) ≤ ∑
𝐻∈ℱ ∅

𝑙

(𝑐𝐻 + 𝑑(𝐹 , 𝐻))𝑑(𝐻 , 𝐺) ≤ max
𝐻∈ℱ ∅

𝑙

(𝑐𝐻 + 𝑑(𝐹 , 𝐻)) .

Novamente, esse tipo de desigualdade permitirá cotar superiormente o valor de 𝑑(𝐹 , 𝐺) para
grafos “grandes” 𝐺 usando apenas informações “finitas”, vindas de 𝐹, de 𝑙 e da desigualdade
na forma de (3.3).

Na verdade, o método semidefinido permitirá obter desigualdades na forma

∑
𝐻∈ℱ ∅

𝑙

𝑐𝐻 ⋅ 𝑑(𝐻 , 𝐺) + 𝑜(1) ≥ 0, (3.4)

onde o termo 𝑜(1) vai para zero quando |𝐺| cresce, e portanto a cota superior obtida
para 𝑑(𝐹 , 𝐺) será

𝑑(𝐹 , 𝐺) ≤ max
𝐻∈ℱ ∅

𝑙

(𝑐𝐻 + 𝑑(𝐹 , 𝐻)) + 𝑜(1). (3.5)

Em geral, esse tipo de resultado é suficiente quando a compreensão assintótica é suficiente.
Veremos no caso do Teorema 2.1 e posteriormente no caso da Conjectura 2.4 que argu-
mentos com blow-ups podem ser usados para transferir os resultados assintóticos para
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grafos de qualquer tamanho finito. Ou seja, o termo 𝑜(1) em (3.4) poderá ser controlado
para as aplicações visadas nesse trabalho.

3.1.2 O Teorema de Mantel
Nessa seção, iremos provar o Teorema 2.1 usando técnicas de álgebras flag que são

simples descrever e que serão generalizadas no que se segue da exposição do método
geral. Iremos usar representações visuais para grafos como usual, de forma que é um
grafo isomorfo a 𝐾2, é um grafo isomorfo a ({𝑎, 𝑏, 𝑐}, {𝑎𝑏, 𝑎𝑐}) e assim por diante. A
motivação para isso, além de facilitar a leitura, é de deixar claro constantemente quais grafos
são “pequenos” e podem ser vistos como parâmetros ou variáveis do método, enquanto
quando escrevermos 𝐺 para representar um grafo como em 𝑑 ( , 𝐺), tipicamente estamos
pensando em 𝐺 como um grafo com 𝑛 vértices e no comportamento assintótico dessa
densidade quando 𝑛 tende a infinito.

O Teorema de Mantel pode ser reescrito da seguinte forma: para todo grafo 𝐺 livre
de triângulos com 𝑛 vértices, temos

𝑑 ( , 𝐺) ≤
𝑛2/4
(𝑛2)

= 1
2
+ 𝑜(1),

em que o termo de erro 𝑜(1) vai para zero quando 𝑛 tende a infinito.

Usando 𝑙 = 3 em (3.2), temos

𝑑 ( , 𝐺) = 𝑑 ( , ) 𝑑 ( , 𝐺) + 𝑑 ( , ) 𝑑 ( , 𝐺) + 𝑑 ( , ) 𝑑 ( , 𝐺) ,

ou simplesmente

𝑑 ( , 𝐺) = 1
3
𝑑 ( , 𝐺) + 2

3
𝑑 ( , 𝐺) . (3.6)

Com isso, vemos que 𝑑 ( , 𝐺) ≤ 2/3. Mas isso é bem mais fraco que o Teorema de
Mantel, então vamos buscar uma desigualdade na forma de (3.4) que nos permita concluir
𝑑 ( , 𝐺) ≤ 1/2 + 𝑜(1).

A desigualdade em questão será

1
2
𝑑 ( , 𝐺) − 1

6
𝑑 ( , 𝐺) − 1

6
𝑑 ( , 𝐺) + 𝑜(1) ≥ 0. (3.7)

Assumindo (3.7) e somando com (3.6), temos

𝑑 ( , 𝐺) ≤ 1
2
𝑑 ( , 𝐺) + 1

6
𝑑 ( , 𝐺) + 1

2
𝑑 ( , 𝐺) + 𝑜(1) ≤ 1

2
+ 𝑜(1),

como desejado. Então nos resta descobrir como gerar a desigualdade “mágica” de (3.7).

Fixe um vértice “especial” 𝑣 ∈ 𝑉 (𝐺) (que representaremos como ). Definimos densi-
dades em 𝐺 com um vértice especial da mesma forma que quando 𝐺 não tinha vértices
especiais, mas agora calculando a densidade de subestruturas que também tenham um
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vértice especial. Por exemplo, 𝑑 ( , 𝐺 ) é a probabilidade de que um vértice 𝑢 ∈ 𝑉 (𝐺)∖{𝑣},
escolhido uniformemente ao acaso, seja vizinho de 𝐺.

Observe que

(𝑑 ( , 𝐺 ) − 𝑑 ( , 𝐺 ))2 ≥ 0, (3.8)

e portanto

𝑑 ( , 𝐺 )2 − 2𝑑 ( , 𝐺 ) 𝑑 ( , 𝐺 ) + 𝑑 ( , 𝐺 )2 ≥ 0. (3.9)

O produto 𝑑 ( , 𝐺 )2 é a probabilidade que dois vértices escolhidos aleatoriamente ao
acaso (com reposição) em 𝑉 (𝐺)∖ {𝑣} sejam ambos vizinhos de 𝐺. A probabilidade que esses
dois vértices sejam iguais é 𝑜(1) quando 𝑛 → +∞, e se eles são distintos, então os dois
(junto com 𝑣) induzem um subgrafo isomorfo a (pois 𝐺 é livre de triângulos). Ou seja,

𝑑 ( , 𝐺 )2 = 𝑑 ( , 𝐺 ) + 𝑜(1).

De forma análoga, é possível provar

𝑑 ( , 𝐺 ) 𝑑 ( , 𝐺 ) = 1
2
𝑑 ( , 𝐺 ) + 1

2
𝑑 ( , 𝐺 ) + 𝑜(1), (3.10)

𝑑 ( , 𝐺 )2 = 𝑑 ( , 𝐺 ) + 𝑑 ( , 𝐺 ) + 𝑜(1). (3.11)

Substituindo (3.10) e (3.11) em (3.9), obtemos

𝑑 ( , 𝐺 ) − 𝑑 ( , 𝐺 ) − 𝑑 ( , 𝐺 ) + 𝑑 ( , 𝐺 ) + 𝑑 ( , 𝐺 ) + 𝑜(1) ≥ 0. (3.12)

Obtivemos assim uma igualdade que se assemelha à igualdade (3.7), mas com densidades
de conjuntos de 3 vértices contendo um vértice especial 𝑣 de 𝐺 em vez de densidades em
𝐺 para subconjuntos de tamanho 3 escolhidos ao acaso e sem vértices especiais.

Para obter a relação desejada, iremos simplesmente escolher 𝑣 uniformemente ao acaso!
Isso também pode ser pensado de forma determinística como a média de (3.12) por todas
as escolhas possíveis de 𝑣 ∈ 𝑉 (𝐺).

Escolhendo 𝑣 aleatoriamente, temos que

𝔼 [𝑑 ( , 𝐺 )] = 1
3
𝑑 ( , 𝐺) ,

pois para cada subgrafo induzido de 𝐺 que é isomorfo a existe apenas uma dentre
as três escolhas possíveis para o vértice especial 𝑣 tal que o grafo “rotulado” resultante
é isomorfo a . De forma similar, temos

𝔼 [𝑑 ( , 𝐺 )] = 2
3
𝑑 ( , 𝐺) , 𝔼 [𝑑 ( , 𝐺 )] = 2

3
𝑑 ( , 𝐺) ,

𝔼 [𝑑 ( , 𝐺 )] = 1
3
𝑑 ( , 𝐺) , 𝔼 [𝑑 ( , 𝐺 )] = 𝑑 ( , 𝐺) .
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Portanto, segue de (3.12) que

1
3
𝑑 ( , 𝐺) − 2

3
𝑑 ( , 𝐺) − 2

3
𝑑 ( , 𝐺) + 1

3
𝑑 ( , 𝐺) + 𝑑 ( , 𝐺) + 𝑜(1) ≥ 0,

que é o mesmo que

𝑑 ( , 𝐺) − 1
3
𝑑 ( , 𝐺) − 1

3
𝑑 ( , 𝐺) + 𝑜(1) ≥ 0,

que é um múltiplo de (3.7). Assim, provamos que se 𝐺 é um grafo livre de triângulos,
então 𝑑 ( , 𝐺) ≤ 1/2 + 𝑜(1).

Para provar a versão original do Teorema de Mantel (ou seja, que 𝑒(𝐺) ≤ 𝑛2/4 em vez
de 𝑒(𝐺) ≤ 𝑛2/4 + 𝑜(𝑛2)), tome um grafo livre de triângulos 𝐺 qualquer e considere blow-up
balanceado 𝐺𝑁 de 𝐺 em que cada vértice de 𝐺 é substituído por um conjunto independente
de tamanho 𝑁. Então, pela versão assintótica do Teorema de Mantel que provamos, vale

𝑒(𝐺𝑁) ≤
1
2
(
𝑁 |𝐺|
2

) + 𝑜(1) ≤
𝑁 2|𝐺|2

4
+ 𝑜(𝑁 2).

Além disso, 𝑒(𝐺) = 𝑁 2𝑒(𝐺), portanto 𝑒(𝐺) ≤ |𝐺|2/4+𝑜(𝑁 2)/𝑁 2. Fazendo 𝑁 → ∞, obtemos
𝑒(𝐺) ≤ |𝐺|2/4, pois 𝑒(𝐺) é inteiro. Esse argumento conclui a prova do Teorema de Mantel.

A estratégia apresentada no esboço acima reflete bem a estratégia geral que utilizaremos
quando formos provar algum resultado mais sofisticado com álgebras de flag:

1. Começamos fixando um subgrafo especial 𝜎 (no caso deMantel, 𝜎 = tem apenas um
vértice) para uma desigualdade quadrática (3.8) envolvendo as densidades relativas
a uma cópia fixa de 𝜎 em 𝐺;

2. Multiplicamos tais densidades relativas a 𝜎 adicionando termos de erro para obter
desigualdades lineares com as densidades relativas a 𝜎 (3.10);

3. Escolhemos aleatoriamente um subgrafo induzido de 𝐺 isomórfico a 𝜎 para associar
as densidades de subgrafos com 𝜎 fixado a densidades de subgrafos sem essa restrição.

A princípio, todos os passos acima podem ser automatizados, exceto a obtenção da
desigualdade quadrática inicial. Essa desigualdade deve satisfazer a hipótese de ser não
negativa para toda escolha de densidade envolvida. Para obter desigualdades dessa forma,
utilizaremos matrizes positivas semidefinidas. Se 𝑋 é um conjunto finito qualquer, então
as matrizes positivas semidefinidas no espaço ℝ𝑋×𝑋 são as matrizes 𝐴 que satisfazem
𝑣⊤𝐴𝑣 ≥ 0 para todo 𝑣 ∈ ℝ𝑋. Denotamos o subconjunto de ℝ𝑋×𝑋 formado por essas
matrizes por 𝕊𝑋+.

A ideia é escolher uma desigualdade da forma 𝑣⊤𝐴𝑣 ≥ 0, onde 𝑣 é um vetor com todas
as densidades de certos subgrafos bem escolhidos e 𝐴 é uma matriz positiva semidefinida.
Por exemplo, podemos reescrever (3.9) como

[𝑑 ( , 𝐺 ) 𝑑 ( , 𝐺 )] [ 1 −1
−1 1 ] [𝑑 ( , 𝐺 )

𝑑 ( , 𝐺 )] ≥ 0.
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De fato, poderíamos ter começado com uma matriz positiva semidefinida genérica 𝐴 =

[𝑎11 𝑎12
𝑎12 𝑎22

]. Encontrando os coeficientes de (3.4) e cotando em (3.5), poderíamos provar

então que 𝑑( , 𝐺) ≤ 𝑑∗ + 𝑜(1), onde 𝑑∗ é o valor ótimo do programa semidefinido

Minimizar max {2
3
+ 1
3
𝑎11 +

2
3
𝑎12,

1
3
+ 2
3
𝑎12 +

1
3
𝑎22, 𝑎22}

sujeito a [𝑎11 𝑎12
𝑎12 𝑎22

] ∈ 𝕊2+.

3.1.3 A álgebra

Fixe ℋ uma família de subgrafos proibidos. Um tipo de tamanho 𝑘 é um grafo ℋ-livre
𝜎 com 𝑉 (𝜎) = [𝑘]. Denotamos o tipo vazio como ∅. Um 𝜎-flag é um par (𝐹 , 𝜃), em que 𝐹
é um grafo ℋ-livre tal que 𝜃∶ [𝑘] → 𝑉 (𝐺) é injetora e define um isomorfismo entre 𝜎 e
𝐺[Im(𝜃)]. Em outras palavras, um tipo é um grafo (pequeno) com todos os seus vértices
rotulados/especiais, enquanto um flag é um grafo parcialmente rotulado de acordo com
um tipo. Note que todo grafo 𝐺 está naturalmente identificado com o ∅-flag (𝐺, ∅).

Definimos isomorfismos entre flags da mesma forma que entre grafos, mas também
preservando o isomorfismo nos vértices rotulados: dois 𝜎-flags (𝐺1, 𝜃1) e (𝐺2, 𝜃2) são iso-
morfos se existe um isomorfismo 𝜌∶ 𝑉 (𝐺1) → 𝑉 (𝐺2) tal que 𝜌(𝜃1(𝑖)) = 𝜃2(𝑖) para cada
𝑖 ∈ [|𝜎 |]. Finalmente, definimos ℱ 𝜎

𝑚 como o conjunto de todos os 𝜎-flags de tamanho 𝑚,
a menos de isomorfismo e ℱ 𝜎 ≔ ∪𝑚≥|𝜎 |ℱ 𝜎

𝑚.

Para definir densidades, sejam (𝐺, 𝜃), 𝐹1, 𝐹2, … , 𝐹𝑡 flags com

|𝐺| − |𝜎 | ≥
𝑡

∑
𝑖=1

(|𝐹𝑖| − |𝜎 |).

Definimos a densidade 𝑑(𝐹1, 𝐹2, … , 𝐹𝑡, 𝐺) como a probabilidade de que, ao escolher con-
juntos dois a dois disjuntos 𝑈1, 𝑈2, … , 𝑈𝑡 ⊆ 𝑉 (𝐺) ∖ Im(𝜃) com |𝑈𝑖| = |𝐹𝑖| − |𝜎 |, vale que o
𝜎-flag (𝐺[𝑈𝑖 ∪ Im(𝜃)], 𝜃) é isomórfico a 𝐹𝑖 para cada 𝑖 ∈ [𝑡]. Quase sempre usamos apenas
𝑡 = 1 e 𝑡 = 2.

O seguinte teorema permite a manipulação de densidades multiplicativas.

Teorema 3.1. Para 𝐹1, 𝐹2 ∈ ℱ 𝜎
𝑚 e 𝐺 ∈ ℱ 𝜎 com |𝐺| ≥ |𝐹1| + |𝐹2| − |𝜎 |, vale que

𝑑(𝐹1, 𝐺)𝑑(𝐹2, 𝐺) = 𝑑(𝐹1, 𝐹2, 𝐺) + 𝑂(|𝐺|−1).

Agora que introduzimos os conceitos e objetivos gerais quando estamos resolvendo um
problema usando álgebras de flag, vamos formalizar alguns dos conceitos que apresentamos
para simplificar as aplicações posteriores. Como visto, o objetivo geral do método aplicado
a problemas de densidade e homomorfismos é obter desigualdades não triviais da forma

∑
𝐹𝑖∈ℱ ∅

𝑙

𝑎𝑖𝑑(𝐹𝑖, 𝐺) + 𝑜(1) ≥ 0, (3.13)
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onde 𝑙 é fixo e 𝐺 ∈ ℱ ∅ é um grafo (não rotulado) arbitrário. Para isso, vimos que é
interessante considerar desigualdades na forma ∑𝐹𝑖∈ℱ 𝜎

𝑙
𝑎𝑖𝑑(𝐹𝑖, 𝐺) + 𝑜(1) ≥ 0, onde 𝐺 ∈

ℱ 𝜎 é um grafo “grande” e aplicar um operador linear (associado a uma distribuição de
probabilidade) que gere uma desigualdade da forma de (3.13).

Como pensamos em 𝐺 como grande e arbitrário, podemos ver as somas
∑𝐹𝑖∈ℱ ∅

𝑙
𝑎𝑖𝑑(𝐹𝑖, 𝐺) como ações de ℱ 𝜎 sobre ℝℱ 𝜎. Ou seja, vamos considerar as somas

formais de 𝜎-flags e deixar um grafo 𝐺 agir sobre elas através de ∑𝑖∈𝐼 𝑎𝑖𝐹𝑖 ↦ ∑𝑖∈𝐼 𝑎𝑖𝑑(𝐹𝑖, 𝐺).
Note que, de (3.2), todo elemento da forma

̃𝐹 − ∑
𝐹∈ℱ 𝜎

𝑙

𝑑( ̃𝐹 , 𝐹 )𝐹 (3.14)

é levado a 0 por qualquer dessas ações. Defina o espaço quociente 𝒜 𝜎 ≔ ℝℱ 𝜎/𝒦 𝜎, onde
𝒦 𝜎 é o subespaço gerado pelos elementos da forma (3.14).

Finalmente, é importante definir uma noção adequada de multiplicação nesse espaço
vetorial para manipular a multiplicação de densidades. Assim, também transformaremos
𝒜 𝜎 numa álgebra. Para 𝐹1 ∈ ℱ 𝜎

𝑙1 e 𝐹2 ∈ ℱ 𝜎
𝑙2 e 𝑙 ≥ 𝑙1 + 𝑙2 − |𝜎 |, definimos

𝐹1 ⋅ 𝐹2 = ∑
𝐹∈ℱ 𝜎

𝑙

𝑑(𝐹1, 𝐹2, 𝐹 )𝐹 ,

e definimos a multiplicação sobre 𝒜 𝜎 expandindo essa definição bilinearmente. É possível
provar (ver [25]) que essa operação de multiplicação está bem definida em 𝒜 𝜎, ou seja,
que não depende da escolha de 𝑙. Defina o mapa

𝜙𝐺∶ ∑𝑎𝑖𝐹𝑖 ∈ 𝒜 𝜎 ↦ ∑𝑎𝑖𝑑(𝐹𝑖, 𝐺) ∈ ℝ.

Pelo Teorema 3.1, 𝜙𝐺 pode ser visto como um “homomorfismo aproximado” de𝒜 𝜎 para ℝ.

Por clareza, apresentamos alguns exemplos de igualdades em 𝒜∅ e em 𝒜 :

= 1
3

+ 2
3

+ ,

⋅ = + ,

⋅ = 1
2

+ 1
2

.

Muitas vezes, quando estamos querendo provar algum resultado de densidade, co-
meçamos com desigualdades de densidades com vértices especiais rotulados de acordo
com um tipo 𝜎. Para transferir esse resultado para grafos não rotulados (i.e., ∅-flags),
escolhemos aleatoriamente onde alocar 𝜎 em 𝐺. Em álgebras de flag, esse formalismo será
realizado por operadores lineares

J⋅K ∶ 𝒜 𝜎 → 𝒜∅

que representam essa “média”.

Para 𝐹 ∈ ℱ 𝜎, definimos J𝐹K ≔ 𝑞(𝐹) ↓𝐹, onde ↓𝐹 ∈ ℱ ∅ é uma cópia de 𝐹 em que os
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rótulos especiais são esquecidos, e 𝑞(𝐹) é a probabilidade que um homomorfismo injetor
𝜃∶ [|𝜎 |] → 𝑉 (↓𝐹), escolhido uniformemente ao acaso, satisfaça que (↓𝐹 , 𝜃) é isomórfico a 𝐹.
Em seguida, estendemos J⋅K linearmente para 𝒜 𝜎. Por exemplo, temos

q y
= ,

q
2 +

y
= 4

3
,

s

21

{
= 1

3
.

Note que os ( 1 2 )-flags 21
e

21
não são isomórficos. Como esse tipo tem mais de

um vértice, é importante rotulá-los. Ao contrário, no tipo de tamanho 1 o rótulo não é
relevante. O seguinte teorema será essencial para as aplicações futuras de álgebras de flag.

Teorema 3.2. Seja 𝐹 um 𝜎-flag e 𝐺 um ∅-flag com |𝐺| ≥ |𝐹 | e 𝑑(↓𝜎, 𝐺) > 0. Então, se 𝜃 é
escolhido uniformemente ao acaso entre todas as injeções 𝜃∶ [|𝜎 |] → 𝑉 (𝐺) com 𝐺[Im(𝜃)]
isomórfico a 𝜎, vale que

𝔼𝜃 [𝑑(𝐹 , (𝐺, 𝜃))] =
𝑞(𝐹)𝑑(↓𝐹 , 𝐺)
𝑞(𝜎)𝑑(↓𝜎, 𝐺)

.

Finalmente, iremos lidar com a noção de “homomorfismos aproximados” de 𝒜 𝜎 a ℝ e
como recuperar de toda a linguagem algébrica introduzida a informação sobre densidades
em grafos para o problema original. Para cada 𝜎-flag 𝐺, podemos associar um vetor (de
dimensão infinita) (𝑑(𝐹 , 𝐺))𝐹∈ℱ 𝜎 ∈ [0, 1]ℱ

𝜎
. Se (𝐺𝑘)𝑘≥0 é uma sequência de 𝜎-flags tal que

tal que 𝑑(𝐹 , 𝐺𝑘) converge para todo 𝐹 ∈ ℱ 𝜎, então dizemos que (𝐺𝑘)𝑘≥0 é convergente. Pela
compacidade de [0, 1] e o Teorema de Tychonoff, o espaço [0, 1]ℱ

𝜎
com a topologia produto

é compacto. Logo, toda sequência infinita (𝐺𝑘)𝑘≥0 de 𝜎-flags possui uma subsequência
infinita que é convergente.

Para cada sequência convergente (𝐺𝑘)𝑘≥0 em [0, 1]ℱ
𝜎
, existe um homomorfismo (entre

espaços vetoriais)

𝜙∶ 𝐹 ∈ ℱ 𝜎 ↦ lim
𝑘→+∞

𝑑(𝐹 , 𝐺𝑘) ∈ ℝ

que pode ser estendido para um homomorfismo (entre álgebras) 𝜙∶ 𝒜 𝜎 → ℝ. Esses
homomorfismos serão chamados de homomorfismos funcionais. Dessa forma, se vale uma
desigualdade∑𝑎𝑖𝐹𝑖 ≥ 0 em𝒜 𝜎, então também vale 𝜙 (∑ 𝑎𝑖𝐹𝑖) ≥ 0 para todo homomorfismo
funcional 𝜙, e logo∑𝑎𝑖𝑑(𝐹𝑖, 𝐺𝑘)+𝑜(1) ≥ 0 para toda sequência convergente (𝐺𝑘)𝑘≥0, onde o
termo 𝑜(1) vai para zero quando |𝐺𝑘| vai para infinito. Escolher (𝐺𝑘)𝑘≥0 como uma sequência
de blow-ups balanceados de um grafo base será suficiente para as aplicações desse trabalho.

Vamos mostrar mais uma vez o Teorema de Mantel usando a expressividade da álgebra
que acabamos de desenvolver. Começamos com

( − )2 ≥ 0.

Assim, temos

⋅ − 2 ⋅ + ⋅ ≥ 0,
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e multiplicando obtemos

− − + + ≥ 0.

Aplicando J⋅K, segue que

1
3

− 2
3

− 2
3

+ 1
3

+ ≥ 0 ⟹ − 1
3

− 1
3

≥ 0.

Dividindo por 2 e somando a igualdade

= 1
3

+ 2
3

,

obtemos
≤ 1

2
+ 1
6

+ 1
2

≤ 1
2
.

Logo, toda sequência infinita de grafos livres de triângulos (𝐺𝑘)𝑘≥0 possui uma subse-
quência (𝐺𝑖𝑘)𝑘≥0com 𝑑 ( , 𝐺𝑖𝑘) ≤ 1/2 + 𝑜(1). Tome 𝐺1 qualquer e para cada 𝑁 ≥ 2 defina
𝐺𝑁 como um blow-up completo balanceado de 𝐺0 em que cada vértice de 𝐺0 é substituído
por um conjunto independente de tamanho 𝑁.

Então para alguma sequência 𝑁0 < 𝑁1 < … vale 𝑑 ( , 𝐺𝑁𝑘) ≤ 1/2 + 𝑜(1). Mas

𝑑 ( , 𝐺𝑁𝑘) =
2𝑒(𝐺𝑁𝑘)

𝑣(𝐺𝑁𝑘)
2 + 𝑜(1) =

2𝑁 2
𝑘 𝑒(𝐺1)

𝑁 2
𝑘 𝑣(𝐺1)2

+ 𝑜(1) =
2𝑒(𝐺1)
𝑣(𝐺1)2

+ 𝑜(1),

logo 𝑒(𝐺1) ≤ (1/4 + 𝑜(1))𝑣(𝐺1)2, e como o termo 𝑜(1) pode ser tornado arbitrariamente
pequeno, obtemos 𝑒(𝐺1) ≤ 𝑣(𝐺1)2/4 para qualquer escolha de 𝐺1.

3.2 Aplicações

Vamos retomar a prova do Teorema 2.7 a partir do ponto de vista de álgebras de flag.
Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices. Sabemos que, para todo vértice 𝑣 ∈ 𝑉 (𝐺),
o conjunto 𝐴𝑣 ≔ 𝐸 (𝐺 − 𝑁(𝑣)) de arestas entre os não vizinhos de 𝑣 é tal que 𝐺 − 𝐴𝑣 é
bipartido considerando as classes (𝑁 (𝑣), 𝑉 (𝐺) ∖ 𝑁(𝑣)). Portanto 𝐷(𝐺) ≤ min𝑣∈𝑉 (𝐺) |𝐴𝑣|,
ou ainda 𝐷(𝐺) ≤ 𝔼𝑣∈𝑉 (𝐺) [|𝐴𝑣|], onde 𝑣 ∈ 𝑉 (𝐺) é escolhido aleatoriamente ao acaso.

Isso nos mostra que é possível modelar certas escolhas de bipartições e, portanto, de
arestas que precisamos contar/deletar a partir de um único vértice especial e de uma estra-
tégia de bipartição. Na linguagem de álgebras de flag (sobre os grafos livres de triângulos),
a primeira parte do Teorema 2.7 pode ser escrita da seguinte forma:

Teorema 3.3. Se ≥ 2/25 para todo flag 𝐺 obtido de 𝐺 rotulando um vértice especial,
então ≤ 2/5.

Demonstração. Primeiro, vamos fixar o tipo 𝜎 de tamanho 1, e os inteiros 𝑙 = 3 e 𝑚 = 2
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(assim como no Teorema de Mantel). Da desigualdade
s
[ ] [𝑎11 𝑎12

𝑎12 𝑎22
] [ ]

{
≥ 0,

segue
(1
3
𝑎11 +

2
3
𝑎12) + (2

3
𝑎12 +

1
3
𝑎22) + 𝑎22 ≥ 0.

Além disso, = 2
3 + 1

3 , logo da média sobre todas as escolhas de 𝐺𝜎 vale que
q y

≥ 2/25 ⟺ ≥ 6
25 , e assim temos

+ 6
25

𝑥 ≤ (2
3
+ 1
3
𝑎11 +

2
3
𝑎12) + (1

3
+ 2
3
𝑎12 +

1
3
𝑎22 + 𝑥) + 𝑎22

≤ max {2
3
+ 1
3
𝑎11 +

2
3
𝑎12,

1
3
+ 2
3
𝑎12 +

1
3
𝑎22 + 𝑥, 𝑎22} .

Finalmente,

≤ max {2
3
+ 1
3
𝑎11 +

2
3
𝑎12,

1
3
+ 2
3
𝑎12 +

1
3
𝑎22 + 𝑥, 𝑎22} −

6
25

𝑥

para toda escolha de [𝑎11 𝑎12
𝑎12 𝑎22

] ⪰ 0 e 𝑥 ≥ 0. Um software que resolve programas semidefi-

nidos pode ser usado para encontrar que o mínimo da expressão acima é 2/5.

3.2.1 Cortes locais
Em [18], os autores provam a seguinte conjectura de Sudakov (ver [29]):

Teorema 3.4. Seja 𝐺 um grafo 𝐾6-livre com 𝑛 vértices. Então 𝐺 pode ser tornado bipartido
deletando no máximo 4𝑛2/25 arestas.

O principal ingrediente dos resultados provados em [18] é a utilização de álgebras de
flag para expressar os chamados cortes locais. O Teorema 3.3 mostra como podemos definir
cortes (ou seja, subgrafos bipartidos grandes) a partir de um único vértice, e também como
utilizar álgebras de flag para expressar a densidade de arestas fora de cada um desses
cortes. Essa técnica também foi utilizada em [2, 24] para definir partições a partir de outros
conjuntos pequenos de vértices.

Por exemplo, se 𝐺 é livre de triângulos e 𝑢𝑣 ∈ 𝐸(𝐺), então é possível definir uma
bipartição de 𝑉 (𝐺) com 𝑁(𝑢) em uma das partes, 𝑁(𝑣) em outra das partes e, para cada
vértice em 𝑉 (𝐺) ∖ (𝑁 (𝑢) ∪ 𝑁(𝑣)), decidimos uniformemente ao acaso com probabilidade
1/2 em qual das partes definidas por 𝑁(𝑢) e 𝑁(𝑣) ele será colocado. A escolha é feita de
forma aleatória porque sabemos que o maior corte (determinístico) que pode ser gerado
tem tamanho pelo menos o valor esperado do tamanho do corte na escolha aleatória, e
é fácil calcular o valor esperado.

Se nenhum desses cortes deixa no máximo 𝑛2/25 arestas de fora, então a densidade
esperada das arestas fora de qualquer um desses cortes definidos localmente é pelo menos
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2/25, o que pode ser expressado da seguinte maneira, onde as densidades são tomadas
sobre um flag 𝐺𝜎 com uma não-aresta 𝑢𝑣 rotulada:

1
2 1 2

+ 1
2 1 2

+ 1
2 1 2

≥ 2
25

. (3.15)

O seguinte resultado demonstra o poder do método de cortes locais para obter cotas
significativamente melhores para resultados parciais na direção da Conjectura 2.4.

Teorema 3.5 ([2]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices. Então, vale que

1. 𝐷(𝐺) ≤ 𝑛2
23.5 ;

2. 𝐷(𝐺) ≤ 𝑛2
25 se 𝑒(𝐺) ≥ 0.3197(𝑛2);

3. 𝐷(𝐺) ≤ 𝑛2
25 se 𝑒(𝐺) ≤ 0.2486(𝑛2).

Contudo, os autores de [2] não descreveram o método e software utilizados para obter
tais resultados, e não podemos reconhecer facilmente a escolha de desigualdades advindas
de cortes locais que os autores tentaram adicionar ao programa semidefinido cuja solução
leva ao Teorema 3.5. A seguir, oferecemos como complemento ao resultado de [2] uma
explicação mais detalhada e abrangente de como restrições à moda de (3.15) podem ser
formuladas e implementadas computacionalmente para gerar resultados parciais para
a Conjectura 2.4.

De forma precisa, um corte local é definido a partir de um tipo 𝜎 de tamanho 𝑘 (nos
exemplos que já vimos, usamos os tipos e 1 2 ) e uma função 𝑝 ∶ 𝒫 (𝑉 (𝜎)) → [0, 1].
Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices (pensamos em 𝑛 como um parâmetro
grande) e 𝑆 ⊆ 𝑉 (𝐺) tal que 𝐺[𝑆] é isomorfo a 𝜎. Seja também 𝑝𝑆 ∶ 𝒫 (𝑆) → [0, 1] o análogo
de 𝑝 em 𝑆 dado pelo isomorfismo entre 𝐺[𝑆] e 𝜎. Defina uma bipartição aleatória (𝐴, 𝐵)
de 𝐺 − 𝑆 em que cada elemento 𝑣 ∈ 𝑉 (𝐺) ∖ 𝑆 é adicionado à parte 𝐴 com probabilidade
𝑝𝑆(𝑁𝐺(𝑣) ∩ 𝑆) ou à parte 𝐵 com probabilidade 1−𝑝𝑆(𝑁𝐺(𝑣)). Se 𝜎 = e 𝑝∅ = 1.0, 𝑝{𝑣} = 0.0,
essa é a bipartição determinística da primeira parte do Teorema 2.7. Os vértices de 𝑆 podem
ficar em qualquer lado da bipartição, porque como 𝑘 é constante em relação a 𝑛, as arestas
adjacentes a 𝑆 são 𝑂(𝑛) no total.

Assim, o número esperado de arestas fora do corte gerado pela bipartição (𝐴, 𝐵) é

𝑂(𝑛) + ∑
𝑋,𝑌⊆𝑉 (𝑆)

𝑋≤𝑌

(𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌))𝑚𝑋𝑌,

onde 𝑚𝑋𝑌 é o número de arestas 𝑢𝑣 ∈ 𝐸(𝐺 − 𝑆) com 𝑁𝐺(𝑢) ∩ 𝑆 = 𝑋 e 𝑁𝐺(𝑣) ∩ 𝑆 = 𝑌 e ≤
é uma ordem total qualquer em 𝒫 (𝑉 (𝜎)).

Para 𝑋, 𝑌 ⊆ 𝑉 (𝜎), seja 𝐹 𝜎𝑋 ,𝑌 ∈ ℱ 𝜎
𝑘+2 o flag que tem dois vértices não rotulados conecta-

dos por uma aresta, um deles ligados a 𝑋 em 𝜎, e o outro ligado a 𝑌 em 𝜎. Assim, podemos
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assumir que, para qualquer escolha de 𝑆, vale que

𝑂(𝑛) + ∑
𝑋,𝑌⊆𝑉 (𝜎)

(𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌))(
𝑛 − 𝑘
2

)𝑑(𝐹 𝜎𝑋 ,𝑌, 𝐺
𝜎) ≥ 𝑛2

25

⟺ ∑
𝑋,𝑌⊆𝑉 (𝜎)

(𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌))𝑑(𝐹 𝜎𝑋 ,𝑌, 𝐺
𝜎) ≥ 2

25
+ 𝑂 (1

𝑛
) ,

onde 𝐺𝜎 é o grafo em que rotulamos 𝑆 como sendo 𝜎. Escolhendo 𝑆 aleatoriamente e usando
o Teorema 3.2 (supondo que 𝑑(↓𝜎, 𝐺) > 0), vale que

∑
𝑋,𝑌⊆𝑉 (𝜎)

(𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌))
𝑞(𝐹 𝜎𝑋 ,𝑌)𝑑(↓𝐹

𝜎
𝑋 ,𝑌, 𝐺)

𝑞(𝜎)𝑑(↓𝜎, 𝐺)
≥ 2

25
+ 𝑜(1).

Omitindo 𝐺 e o termo 𝑜(1), que já sabemos que podemos omitir, obtemos finalmente

∑
𝑋,𝑌⊆𝑉 (𝜎)

(𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌))
q
𝐹 𝜎𝑋 ,𝑌

y
≥ 2

25
J𝜎K . (3.16)

Observe que essa última desigualdade vale mesmo no caso J𝜎K = 0, pois aí também teríamosq
𝐹 𝜎𝑋 ,𝑌

y
= 0 para cada escolha de𝑋 e 𝑌. Chamamos essa desigualdade de uma (𝜎 , 𝑝)-restrição.

Também sabemos que podemos gerar restrições escolhendo um tipo 𝜋, um inteiro
𝑚 ≥ |𝜋| e, listando ℱ 𝜋

𝑚 = {𝐹1, 𝐹2, … , 𝐹ℓ}, para qualquer 𝐴 ∈ 𝕊ℓ+ vale que

ℓ
∑
𝑖,𝑗=1

𝐴𝑖𝑗
q
𝐹𝑖𝐹𝑗

y
≥ 0. (3.17)

Chamamos essa desigualdade de uma (𝜋, 𝑚)-restrição.

3.2.2 Construindo o programa

Note que uma (𝜎 , 𝑝)-restrição é escrita em termos de elementos de𝒜∅
|𝜎 |+2, e uma (𝜋, 𝑚)-

restrição é escrita em termos de elementos de 𝒜∅
2𝑚−|𝜋| e variáveis que correspondem a

matrizes positivas semidefinidas.

Fixe uma coleção {(𝜎1, 𝑝1), (𝜎2, 𝑝2), … , (𝜎𝑟, 𝑝𝑟)} de (𝜎 , 𝑝)-restrições e uma coleção
{(𝜋1, 𝑚1), (𝜋2, 𝑚2), … , (𝜋𝑠, 𝑚𝑠)} de (𝜋, 𝑚)-restrições. Tome𝑚 ≥ max𝑖(|𝜎𝑖|+2),max𝑗(2𝑚𝑗−|𝜋𝑗|).
Usando (3.14), podemos escrever as 𝑟 + 𝑠 restrições como desigualdades em 𝒜∅

𝑚 .

De forma mais explícita, uma (𝜎 , 𝑝)-restrição pode ser reescrita em 𝒜∅
𝑚 como

∑
𝐹∈ℱ ∅

𝑚

( ∑
𝑋,𝑌⊆𝑉 (𝜎)

(𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌)) ([𝐹 ]
q
𝐹 𝜎𝑋 ,𝑌

y
) − 2

25
[𝐹] J𝜎K) 𝐹 ≥ 0,

onde [𝐹 ]𝐹 ′ é o coeficiente de 𝐹 quando 𝐹 ′ é expandido em termos de flags de ordem |𝐹 |.



3.2 | APLICAÇÕES

23

Escreva cada uma das (𝜎 , 𝑝)-restrições como

∑
𝐹∈ℱ ∅

𝑚

𝑐(𝐹 )𝐹 ≥ 0, (3.18)

onde os 𝑐(𝐹 )’s são coeficientes não negativos. Analogamente, uma (𝜋, 𝑚)-restrição pode
ser reescrita como

ℓ
∑
𝑖,𝑗=1

𝐴𝑖𝑗[𝐹 ]
q
𝐹𝑖𝐹𝑗

y
𝐹 ≥ 0 ⟺ ∑

𝐹∈ℱ ∅
𝑚

(
ℓ
∑
𝑖,𝑗=1

𝑑𝑖𝑗(𝐹 )𝐴𝑖𝑗) 𝐹 ≥ 0. (3.19)

Finalmente, escreva

= ∑
𝐹∈ℱ ∅

𝑚

𝑏(𝐹)𝐹 . (3.20)

Combinando as equações (3.18), (3.19) e (3.20), obtemos

≤ ∑
𝐹∈ℱ ∅

𝑚

(𝑏(𝐹) +
𝑟

∑
𝑖=1

𝑐𝑖(𝐹 ) ⋅ 𝛼𝑖 +
𝑠
∑
𝑘=1

ℓ𝑘
∑
𝑖,𝑗=1

𝑑𝑘𝑖𝑗(𝐹 ) ⋅ (𝐴𝑘)𝑖𝑗) 𝐹

≤ max
𝐹∈ℱ ∅

𝑚
(𝑏(𝐹) +

𝑟
∑
𝑖=1

𝑐𝑖(𝐹 ) ⋅ 𝛼𝑖 +
𝑠
∑
𝑘=1

ℓ𝑘
∑
𝑖,𝑗=1

𝑑𝑘𝑖𝑗(𝐹 ) ⋅ (𝐴𝑘)𝑖𝑗) ,

onde 𝛼1, 𝛼2, … , 𝛼𝑟 ≥ 0 são escalares.

Finalmente, podemos montar o seguinte programa semidefinido para encontrar o valor
ótimo da expressão acima:

Minimizar 𝑀

sujeito a 𝑀 −
𝑟

∑
𝑖=1

𝑐𝑖(𝐹 ) 𝛼𝑖

−
𝑠
∑
𝑘=1

ℓ𝑘
∑
𝑖,𝑗=1

𝑑𝑘𝑖𝑗(𝐹 ) (𝐴𝑘)𝑖𝑗 ≥ 𝑏(𝐹), para cada 𝐹 ∈ ℱ ∅
𝑚 ,

𝑀 ≥ 0,
𝛼𝑖 ≥ 0, para cada 𝑖 ∈ [𝑟],

𝐴𝑘 ∈ 𝕊ℓ𝑘+ , para cada 𝑘 ∈ [𝑠].

Se 𝑑∗ é o valor ótimo desse programa, então a Conjectura 2.4 está provada para grafos
com pelo menos 𝑑∗

2 𝑛
2 arestas. O nosso objetivo, é combinar (𝜎 , 𝑝)-restrições e (𝜋, 𝑚)-

restrições que gerem valores menores de 𝑑∗.

Escolher bons valores de 𝜎 e 𝑝 é um desafio porque o número de restrições geradas
cresce exponencialmente, e para |𝜎 | ≥ 5 já é impraticável gerar todas as (𝜎 , 𝑝)-restrições
sem escolher “à mão” valores de 𝜎 e 𝑝. Em [2], os autores comentam pelo menos duas
escolhas de (𝜎 , 𝑝)-restrições com |𝜎 | = 6, uma delas formulada especialmente para lidar
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com o grafo de Clebsch, um grafo de Cayley que é descrito como “particularmente hostil”
com respeito à estratégia de cortes locais.

Estamos desenvolvendo uma implementação do método de [2] que pode ser encontrada
em https://github.com/Marcelo-ML/flag-algebras. Até o momento da conclusão desse
trabalho, não conseguimos reproduzir os resultados do Teorema 3.5. Estamos buscando
estratégias de otimização e incorporação de novas restrições locais que permitam agilizar a
geração dos programas definidos correspondentes. Conforme sugerido em [2], não é sempre
claro qual o “melhor” corte local a se incorporar ao programa, e exemplos patológicos
como o do grafo de Clebsch mostram que certas estruturas apresentam tanta rigidez com
relação a cortes locais que adicionar milhares de restrições de cortes locais pode ser muito
mais ineficiente que uma única restrição bem escolhida. Suspeitamos que uma classificação
mais eficiente de certos exemplos extremais advindos de grafos de Cayley e o estudo
da Conjectura 2.4 para certas classes de grafos pseudoaleatórios pode ser útil em novas
frentes de avanço para a conjectura principal.

3.3 Considerações sobre software e questões
numéricas

O método de álgebras de flag foi originalmente introduzido por Razborov em um
contexto muito mais geral que de grafos, na linguagem da Teoria dos Modelos Finitos. De
fato, não é difícil generalizar a descrição prática desse capítulo para contextos como de
hipergrafos, digrafos, grafos com coloração, permutações, entre vários outros modelos.

Apesar disso, ainda não há uma implementação “padrão” das álgebras de flag. O
software flagmatic (https://lidicky.name/flagmatic/) é possivelmente a implementação
mais acessível e tem sido usada com êxito em problemas do tipo Turán. Ademais, o software
flagmatic já foi usado e testado com resultados prolíficos em diversos problemas de densi-
dade em grafos e hipergrafos. Outras implementações podem ser encontradas facilmente e
tem sido usados com êxito em problemas de combinatória extremal (ver [6, 7, 22]).

Nesse trabalho, optamos por utilizar o pacote flag-algebra-program-package (de-
senvolvido por Leonardo Nagami Coregliano e disponível em https://github.com/
robertoparente/flag-algebra-program-package) para elaborar os programas, que é desen-
volvido inteiramente em C++ e foi usado para obter os resultados de [10]. A implementação
está disponível em https://github.com/Marcelo-ML/flag-algebras.

Escolhemos esse pacote como base porque ele oferecia um nível suficiente de abstração
e otimização para certas propriedades como normalização e produto de densidades, além
de a documentação e linguagem serem mais acessíveis nas fases iniciais desse trabalho.
Usamos o csdp para resolver os programas semidefinidos vindos da formulação em álgebras
de flag. No futuro, consideraremos revisar os métodos utilizados e trabalhar com uma
distribuição do flagmatic.

Por fim, cabe ressaltar que muitas vezes os cálculos não são feitos de forma exata,
e isso depende da implementação utilizada. Há métodos de arredondamento utilizados
(implementados pelo flagmatic), mas no caso da geração de cortes locais, arredondar os
resultados em ponto flutuante dos resultados do csdp incorreria em ainda mais tempo

https://github.com/Marcelo-ML/flag-algebras
https://lidicky.name/flagmatic/
https://github.com/robertoparente/flag-algebra-program-package
https://github.com/robertoparente/flag-algebra-program-package
https://github.com/Marcelo-ML/flag-algebras
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de execução para os programas. Como nesse trabalho nos preocupamos, principalmente,
com o detalhamento da implementação dos métodos de [2], não realizamos cálculos de
forma exata. De fato, em [2] é fornecido um esboço de prova para o regime de densidade
𝑒(𝐺) ≥ (0.2− 𝜀)𝑛2 para 𝜀 ≈ 10−8 (que depende dos erros máximos garantidos pela execução
do csdp). A prova desse resultado utiliza um argumento de remoção de vértices de grau
baixo e também o Teorema 2.10.
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Capítulo 4

Restrições de grau mínimo

4.1 Grafos livres de triângulos com grau mínimo
alto

Na literatura que trata da Teoria Extremal dos Grafos, o estudo de grafos livres de
certos subgrafos com grau mínimo limitado inferiormente merece atenção especial. Um dos
teoremasmais fundamentais nesse sentido é o seguinte teorema de Andrásfai, Erdős e Sós:

Teorema 4.1 ([1]). Seja 𝑟 ≥ 2 e 𝐺 um grafo livre de 𝐾𝑟+1 com 𝑛 vértices. Se

𝛿(𝐺) > 3𝑟 − 4
3𝑟 − 1

𝑛,

então 𝐺 é 𝑟-partido.

Para grafos livres de triângulos, o Teorema 4.1 prova que, se um grafo livre de triângulos
tem grau mínimo maior que 𝛿(𝐺) > 2𝑛/5, então ele é bipartido. Automaticamente, a
Conjectura 2.4 é verdadeira para grafos com grau mínimo maior que 2𝑛/5. Mas se 𝛿(𝐺) >
2𝑛/5, então 𝑒(𝐺) > 𝑛2/5, o que já é coberto pelo Teorema 2.9. Portanto, é de se perguntar
se a condição de grau mínimo pode ser relaxada, a fim de obter algum resultado que não
seja trivial dada a restrição 𝑒(𝐺) ≥ 𝑛2/5.

Para obter esse relaxamento, usamos o seguinte importante resultado:

Teorema 4.2 ([5]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices e 𝛿(𝐺) > 𝑛/3. Então
𝐺 é homomórfico a um grafo Vega.

Não definimos precisamente os grafos Vega porque não os utilizaremos de forma
direta no trabalho (o menor deles tem 11 vértices e é conhecido como Grafo de Grötzsch).
Por ora, é suficiente dizer que os grafos Vega são supergrafos dos grafos de Andrásfai
que apresentaremos em breve, e veremos que, com condições levemente relaxadas, o
Teorema 4.2 possui análogos mais simples em termos de grafos de Andrásfai.

É interessante observar que a condição do Teorema 4.2 não pode ser substituída por
𝛿(𝐺) > 𝑐𝑛 para nenhum 𝑐 < 1/3. De fato, para todo 𝜀 > 0, existem grafos de 𝑛 vértices com
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grau mínimo maior que (1/3 − 𝜀)𝑛 mas número cromático não limitado (ver [15]).

De toda forma, a utilidade do Teorema 4.2 e de teoremas de homomorfismo relaciona-
dos é que, se temos um teorema que garante que 𝐺 com uma quantidade muito grande
de vértices é homomórfico a 𝐻 (que tem, digamos, 8 vértices), então pelo Teorema 2.6
sabemos exatamente como proceder para encontrar candidatos de conjuntos de arestas
que, removidos, podem realizar 𝐷(𝐺).

4.1.1 Grafos de Andrásfai
Os grafos de Andrásfai são importantes estruturas no estudo de propriedade de estabi-

lidade em grafos livres de triângulos e são definidos da seguinte forma.

Definição 4.3. Seja 𝑑 ≥ 1 um inteiro positivo. O grafo de Andrásfai 𝐹𝑑 é o grafo com
vértices {0, 1, … , 3𝑑 − 2} (vistos módulo 3𝑑 − 1) e arestas entre 𝑖 e 𝑖 + 𝑑 + 𝑗 para cada
𝑖 ∈ {0, 1, … , 3𝑑 − 2} e cada 𝑗 ∈ {0, 1, … , 𝑑 − 1}.

Uma forma de representar os grafos de Andrásfai é colocar os vértices em uma circun-
ferência em sentido horário como vértices de (3𝑑 − 1)-ágono regular e ligar cada vértice
com os 𝑑 vértices mais distantes (ver Figura 4.1).

0

1
𝐹1

0

1

23

4

𝐹2

0
1

2

3
4

5

6

7

𝐹3

0 1
2

3

4
56

7

8

9
10

𝐹4

Figura 4.1: Grafos de Andrásfai para 𝑑 ∈ {1, 2, 3, 4}. Observe que 𝐹𝑑 é 𝑑-regular e livre de triângulos.

Os Teoremas 4.4 e 4.5 formam a caracterização estrutural que estamos procurando.

Teorema 4.4 ([19]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices e grau mínimo maior
que 10𝑛/29. Então 𝐺 ↪ 𝐹9.

Teorema 4.5 ([9]). Seja 𝐺 um grafo livre de triângulos com 𝑛 vértices e 𝜒(𝐺) ≤ 3. Se
𝛿(𝐺) > 𝑑+1

3𝑑+2𝑛 para algum 𝑑 ≥ 1, então 𝐺 ↪ 𝐹𝑑.

Do Teorema 4.5, segue diretamente que se 𝐺 é um grafo livre de triângulos com 𝑛
vértices satisfazendo 𝛿(𝐺) > 𝑛/3 e 𝜒(𝐺) ≤ 3, então 𝐺 é homomórfico a algum 𝐹𝑑.

4.2 A Conjectura 2.4 para grafos de Andrásfai

Em [3], os autores verificam o seguinte resultado para a Conjectura 2.11:

Teorema 4.6 ([3]). Se um grafo 𝐺 com 𝑛 vértices é homomórfico a um grafo de Andrásfai 𝐹𝑑
para algum 𝑑 ≥ 1, então existe 𝑋 ⊆ 𝑉 (𝐺) com |𝑋 | ≤ ⌊𝑛/2⌋ e 𝑒(𝐺[𝑋]) ≤ 𝑛2/50.
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Para isso, os autores utilizaram uma representação geométrica de grafos de Andrásfai
como subgrafos finitos de um grafo infinito com vértices no círculo unitário, e o conjunto
𝑋 é escolhido também de forma geométrica, como pontos em um intervalo no círculo
com os vértices de 𝐺.

Inspirados nessa interpretação geométrica de grafos de Andrásfai, provamos o seguinte
resultado nessa seção:

Teorema 4.7. Seja 𝐺 um grafo livre de triângulos isomorfo a 𝐹𝑑 para algum 𝑑 ≥ 1. Então 𝐺
satisfaz a Conjectura 2.4 se alguma das condições abaixo vale:

1. 𝑑 ≤ 3;

2. Cada uma das 3𝑑 − 1 classes de 𝐺 tem tamanho no máximo 2
5𝑑 |𝐺|.

4.2.1 Condição 1
Inicialmente, verificamos um lema geral sobre partições do conjunto de arestas em

grafos livres de triângulos.

Lema 4.8. Seja 𝐺 um grafo e suponha que existem 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 ⊆ 𝐸, dois a dois disjuntos,
tais que 𝐺 − 𝐸𝑖 é bipartido para cada 𝑖 ∈ {1, 2, 3, 4, 5}. Então 𝐺 satisfaz a Conjectura 2.4.

Demonstração. Se 𝑒(𝐺) ≥ 𝑛2/5, então o resultado segue do Teorema 2.9. Por outro lado, se
𝑒(𝐺) < 𝑛2/5, então

5min{|𝐸1|, |𝐸2|, |𝐸3|, |𝐸4|, |𝐸5|} ≤ |𝐸1| + |𝐸2| + |𝐸3| + |𝐸4| + |𝐸5| ≤ 𝑒(𝐺) < 𝑛2

5
,

e para |𝐸𝑖| = min{|𝐸1|, |𝐸2|, |𝐸3|, |𝐸4|, |𝐸5|} temos 𝐺 − 𝐸𝑖 bipartido com |𝐸𝑖| < 𝑛2/5.

Dessa forma, se apresentarmos uma tal partição para 𝐹𝑑, ela também valerá para qual-
quer blow-up de 𝐹𝑑, independentemente dos tamanhos relativos entre as classes no blow-up.
A Figura 4.2 mostra uma tal partição para 𝐹3, em que cada cor está associada a um 𝐸𝑖.

0

1

2

3

4

5

6

7

Figura 4.2
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Corolário 4.9. Se 𝐺 é livre de triângulos e 𝛿(𝐺) > 4𝑛/11, então 𝐺 satisfaz a Conjectura 2.4.

Apesar disso, não é fácil generalizar a estratégia de partição de 𝐸(𝐺) do Lema 4.8, porque
essa propriedade não ocorre em geral em grafos livres de triângulos. De fato, é fácil verificar
que essa partição não existe para 𝐹4 e, portanto, não existe para nenhum 𝐹𝑑 com 𝑑 ≥ 4.

4.2.2 Condição 2
Na Seção 4.2.1, utilizamos a estratégia de tentar encontrar conjuntos explícitos de

arestas 𝐹 ⊆ 𝐸(𝐹𝑑) tais que 𝐹𝑑−𝐹 é bipartido e transferir as propriedades dessas arestas para
blow-ups de 𝐹𝑑. Pelo Teorema 2.6, essa estratégia não é somente razoável, mas suficiente
para encontrar conjuntos de arestas de grafos 𝐻 ↪ 𝐹𝑑 que realizem 𝐷(𝐻).

Assim, seguimos a estratégia geral de procurar, em 𝐹𝑑, conjuntos de arestas pequenos
cuja remoção torna 𝐹𝑑 bipartido. É fácil ver que os conjuntos independentes maximais de
𝐹𝑑 são conjuntos de vértices consecutivos (módulo 3𝑑 − 1), e portanto é natural considerar
conjuntos que possuem a maior quantidade possível de vértices consecutivos, ou seja,
com uma das partes contendo os vértices de 0 a ⌊3𝑑/2⌋ − 1 e a outra parte contendo os
vértices de ⌊3𝑑/2⌋ a 3𝑑 − 1.

Teorema 4.10. Seja 𝑑 ≥ 1. Então

𝐷(𝐹𝑑) ≤ ⌊𝑑
2

4
⌋ .

Demonstração. Basta apresentar uma bipartição {𝐴, 𝐵} de 𝐹𝑑 com 𝑒(𝐺[𝐴]), 𝑒(𝐺[𝐵]) =
⌊𝑑2/4⌋. Considere a seguinte bipartição 𝑉 (𝐹𝑑) = 𝐴 ∪ 𝐵 em que cada parte é formada
por (aproximadamente) metade dos vértices de 𝐹𝑑:

𝑉 (𝐺) = {0, 1, … , ⌊(3𝑑 − 1)/2⌋ − 1} ∪ {3𝑑 − 2, 3𝑑 − 3,… , ⌊(3𝑑 − 1)/2⌋}.

Figura 4.3: Exemplo da bipartição para 𝑑 = 5.

Em 𝐴, as arestas que ligam vértices a uma distância ℓ (percorrida no círculo no sentido
mais próximo) são ⌊(3𝑑 − 1)/2⌋ − ℓ, para cada ℓ ∈ {𝑑, 𝑑 + 1, … , |𝐴| − 1} (ver Figura 4.3).
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Fazendo a contagem análoga para 𝐵, obtemos:

𝑒(𝐺[𝐴]) + 𝑒(𝐺[𝐵]) =
⌊ 3𝑑−12 ⌋−1

∑
ℓ=𝑑

⌊3𝑑 − 1
2

⌋ − ℓ +
⌈ 3𝑑−12 ⌉−1

∑
ℓ=𝑑

⌈3𝑑 − 1
2

⌉ − ℓ

=
⌊ 𝑑−12 ⌋

∑
𝑖=1

𝑖 +
⌈ 𝑑−12 ⌉

∑
𝑖=0

𝑖

= 1
2
(⌊𝑑 − 1

2
⌋ ⌊𝑑 + 1

2
⌋ + ⌈𝑑 − 1

2
⌉ ⌈𝑑 + 1

2
⌉) .

Se 𝑑 é ímpar, temos 𝑒(𝐺[𝐴]) + 𝑒(𝐺[𝐵]) = 2(𝑑2 − 1)/8 = ⌊𝑑2/4⌋. Se 𝑑 é par, temos 𝑒(𝐺[𝐴]) +
𝑒(𝐺[𝐵]) = 2𝑑2/8 = ⌊𝑑2/4⌋.

Finalmente, se toda classe de 𝐺 tem tamanho no máximo 2|𝐺|/5𝑑, segue que

𝐷(𝐺) ≤ 𝐷(𝐹𝑑) ⋅
4|𝐺|2

25𝑑2
≤ 𝑑2

4
⋅
4|𝐺|2

25𝑑2
=

|𝐺|2

25
.

O resultado de 2 pode ser melhorado utilizando os mesmos conjuntos de arestas mas
tomando conjuntos de vértices gerados rotacionando a linha que separa as partes do
subgrafo bipartido final. No geral, desejamos incluir pesos 𝑥0, 𝑥1, … , 𝑥3𝑑−2 ∈ [0, 1] com
∑3𝑑−2

𝑖=0 𝑥𝑖 = 1 e modelar o número de arestas removidas como uma expressão da forma
∑𝑖𝑗∈𝐹 𝑥𝑖𝑥𝑗, em que 𝐹 ⊆ 𝐸(𝐹𝑑) é tal que 𝐹𝑑 − 𝐹 é bipartido.

Contudo, a região factível do programa resultante não é côncava. Uma forma fácil de
verificar isso é tomando 𝑈 ⊆ 𝑉 (𝐹𝑑) tal que 𝐺[𝑈 ] é isomórfico a 𝐶5 e a atribuição

{
𝑥𝑣 =

1
5 se 𝑣 ∈ 𝑈 ,

𝑥𝑣 = 0 se 𝑣 ∉ 𝑈 .

Essa atribuição equivale a um blow-up de 𝐹𝑑 que também é um blow-up balanceado de 𝐶5,
e que não pode ser tornado bipartido pela deleção de menos que 𝑛2/5 arestas. Dessa forma,
se a Conjectura 2.4 for verdadeira, todas essas atribuições são extremos locais para os
problemas de otimização razoáveis que podem ser considerados. Para valores pequenos de
𝑑, verificamos computacionalmente que, de fato, esses são os únicos extremos locais.
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Capítulo 5

Conclusão

Nesse trabalho, apresentamos a Conjectura 2.4 de Erdős, que completa 50 anos em
aberto no ano de 2025. No Capítulo 2, estudamos resultados parciais clássicos para a
conjectura, utilizando contagens e simetrização que remontam às décadas de 1970 e
1980. Nos Capítulos 3 e 4, propusemos estudar a Conjectura 2.4 utilizando técnicas mais
modernas de Teoria Extremal dos Grafos: as álgebras de flag de Razborov e os teoremas de
homomorfismo em grafos livres de triângulos com grau mínimo alto.

Os métodos utilizados no Capítulo 3 prometem ser bastante robustos e o Teorema 3.5
de [2] cobre os resultados do Capítulo 4, uma vez que grafos com grau mínimo maior
que 𝑛/3 tem mais de 𝑛2/6 arestas.

Não obstante, não se descarta a importância do estudo continuado de propriedades
estruturais de blow-ups de Andrásfai para a Conjectura 2.4, em particular para compreender
a dinâmica do problema em blow-ups de grafos bem estruturados ou os exemplos extremais
abaixo do limiar de arestas 𝑛2/5 (que não é coberto pelo Teorema 2.10).

Por fim, destaca-semais uma vez a relação entre as Conjecturas 2.4 e 2.11. Recentemente,
o método de álgebras de flag também foi utilizado por Razborov para obter resultados
parciais para a Conjectura 2.11 (trocando a constante 1/50 por 27/1024) [27]. Dessa forma,
espera-se que os produtos desse trabalho possam continuar a ser utilizados em problemas
relacionados da combinatória extremal.
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