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Resumo

Marcelo Machado Lage. Sobre uma conjectura de Erdés acerca de grafos livres de
triangulos. Monografia (Bacharelado). Instituto de Matematica, Estatistica e Ciéncia da

Computacdo, Universidade de Sdo Paulo, Sdo Paulo, 2025.

Grafos livres de tridngulos sio objetos de grande importancia na Teoria Extremal dos Grafos. O classico
Teorema de Mantel mostra o limite para o nimero maximo de arestas que um tal grafo pode ter, e, a partir
da década de 1960, perguntas mais desafiadoras vém sendo postas relacionadas a grafos livres de tridngulos.
Nesse trabalho, investigamos questdes de estabilidade em grafos livres de tridngulos e, particularmente, uma

conjectura proposta por Erdés em 1975 sobre a distancia entre grafos livres de tridngulos e grafos bipartidos.

Inicialmente, apresentamos resultados parciais para a conjectura utilizando técnicas classicas em Teoria
Extremal dos Grafos. Em seguida, apresentamos duas técnicas modernas que tém sido usadas para avancar em
conjecturas sobre grafos livres de tridngulos: as 4lgebras de flag de Razborov, que permitem automatizar certas
estratégias de prova que generalizam os métodos classicos usando cortes locais; teoremas de homomorfismos
em grafos com restricdo de grau minimo, que facilitam o estudo de objetos complexos a partir de uma
perspectiva mais simples. Por fim, obtemos avancos parciais na conjectura principal utilizando esses dois
métodos, que se complementam pela forca expressiva e versatilidade computacional das algebras de flag

e pela simplificagao estrutural dos teoremas de homomorfismos.

Palavras-chave: Grafos. Combinatéria. Algebras de flag.






Abstract

Marcelo Machado Lage. On a conjecture by Erd4s about triangle-free graphs.
Capstone Project Report (Bachelor). Institute of Mathematics, Statistics and Computer

Science, University of Sdo Paulo, Sao Paulo, 2025.

Triangle-free graphs are objects of great importance in Extremal Graph Theory. A classic result by
Mantel establishes the limit for the maximum number of edges a triangle-free graph can have. Starting in the
1960s, more challenging questions have been posed about such graphs. In this work, we investigate stability
questions related to triangle-free graphs, particularly a conjecture proposed by Erdés in 1975 regarding

the distance between triangle-free graphs and bipartite graphs.

Initially, we present partial results to the conjecture using classical techniques in Extremal Graph Theory.
Then, we present and apply two modern techniques to advance the conjecture: Razborov’s flag algebras,
which allow for the automatization of certain proof strategies that generalize the classical methods using
local cuts, and homomorphism theorems in graphs with minimum degree restrictions, which facilitate the
study of complex objects by offering a simpler perspective. We obtain partial results for the conjecture using
both methods, which complement each other through the expressive power and computational versatility of

the flag algebras and the structural simplification afforded by the homomorphism theorems.

Keywords: Graphs. Combinatorics. Flag algebras.
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Introducao

Uma das perguntas mais fundamentais em Teoria Extremal dos Grafos é “qual o
maior numero possivel de arestas em um grafo com n vértices sem copias de H como
subgrafo?” Os celebrados teoremas de Turan e Erd8s-Stone, e Erdés-Kovari-Sés dao res-
postas complementares para essa pergunta quantitativa, e muitas vezes (como no caso dos
dois primeiros) fornecem também respostas qualitativas. De fato, se H nao é bipartido, o
Teorema de Erd6s-Stone diz que um grafo que atinja a cota superior deve se aproximar de
um grafo (y(H) — 1)-partido, onde y(H) é o numero croméatico de H. Para mais detalhes,
recomendamos o livro [4].

A resposta (numérica e estrutural) para essa pergunta no caso em que H é um triangulo
¢ um dos resultados mais antigos em Teoria Extremal dos Grafos, tendo sido provado
por Mantel em 1907: um grafo com n vértices sem triangulos possui no méaximo n?/4
arestas, e se a cota ¢ atingida com igualdade, entdo H ¢é bipartido. A partir das décadas de
1960 e 1970, com o trabalho de Erdés, Simonovits, Andrasfai e outros, a interacio entre
restricdes numéricas e restricdes estruturais em grafos introduz perguntas diversas, entre
elas o estudo da estabilidade.

A estabilidade se refere justamente ao comportamento de grafos que, proximos ao
limiar para o qual uma propriedade acontece, se aproximam de um exemplo “extremal”.
Para o Teorema de Mantel, uma pergunta geral que se pode fazer é “quio proximo de
ser bipartido um grafo livre de tridngulos pode estar”? Em 1975, Erd6s conjecturou que
todo grafo livre de tridangulos com n vértices pode ser tornado bipartido deletando no
méximo n? /25 das suas arestas.

O caso geral dessa conjectura permanece em aberto até a data da conclusdo deste texto.
Neste trabalho, realizamos um estudo da conjectura, dos resultados classicos provados
em direcdo a estabilidade em grafos livres de tridngulos e posteriormente apresentamos e
empregamos duas ferramentas modernas (algebras de flag e teoremas de homomorfismos
relacionados a condi¢des de grau minimo) para obter avancos parciais na direcao do caso
geral da conjectura.

Estrutura do trabalho

Organizamos os capitulos subsequentes como segue.

« No Capitulo 1, introduzimos alguns conceitos e fixamos a notacdo que sera utilizada
ao longo deste trabalho.
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No Capitulo 2, discutimos uma breve histéria do problema e resultados parciais
classicos.

No Capitulo 3, apresentamos as algebras de flag e a técnica de cortes locais para
obter resultados numéricos na direcdo da conjectura principal.

No Capitulo 4, discutimos teoremas de homomorfismos e a conjectura principal para
grafos de grau minimo alto.

No Capitulo 5, discutimos brevemente os resultados obtidos e dire¢des futuras de
pesquisa.



Capitulo 1

Preliminares

Um grafo G é um par de conjuntos finitos (V, E), onde V é o conjunto de vértices de
G, e E é o conjuntos de arestas (pares nao ordenados de vértices). Escrevemos v(G) (ou
|G|) e e(G) para representar a cardinalidade de V e E, respectivamente. Dado um grafo G,
usamos V(G) e E(G) para representar seu conjunto de vértices e arestas, respectivamente.
Escrevemos, por simplicidade, uv (ou vu) para denotar a aresta {u, v} € E(G). Se a aresta uv
é um elemento de E(G), entdo dizemos que u e vsio vizinhos (em G). A vizinhanga de v (em
G) é definida como Ng(v) := {u € V(G) : uv € E(G)}, e o grau de v(em G) é definido como
dg(v) == |[Ng(v)|. Quando estiver claro a que grafo G estamos nos referindo, escrevemos
simplesmente N(v) e d(v). Definimos o grau minimo de G como min, ey (g) dg(v). Dizemos
que G é d-regular se dg(v) = d para todo v € V(G).

Um grafo H é dito subgrafo de um grafo G e escrevemos H C Gse V(H) C V(G) e
E(H) C E(G)n (V(f )). Ademais, se V(G) = V(H), dizemos que H é um subgrafo gerador
de G. Se um grafo G nao contém nenhum subgrafo isomorfo a H, dizemos que G é livre de
H ou H-livre. Para qualquer familia # de grafos, dizemos que G ¢ livre de # ou 7 -livre
se G é H-livre para cada H € #. Dado um subconjunto S C V(G), denotamos por G[S] o
grafo (S, E(G)n (g)). Para cada S C V(G), definimos G — S := G[V(G) \ S|, e para cada
F C E(G), definimos G — F := (V(G), E(G) \ F).

Dizemos que um subconjunto S C V(G) é independente (em G) se G[S] ndo possui
nenhuma aresta. Um grafo com n vértices e ('21) arestas é chamado de completo. O grafo
completo com conjunto de vértices {1, 2, ..., n} é denotado K;,. Definimos o k-ciclo C;. como o
grafo com conjunto de vértices [n] := {1, 2,...,n} e conjunto de arestas {{1, 2},{2,3}, ..., {k —
1,k}, {k, 13}

Se G é um grafo tal que V(G) admite uma particao {A, Ay, ..., A} em que cada A; é
um conjunto independente em G, entdo dizemos que G é r-partido, e (Ay, A, ..., A,) é uma
r-parti¢ao de G. Cada A; é chamado de uma classe da r-particdo. Dizemos que G é r-partido
completo se E(G) = Uy<icj<,G [A;UA j] . Um grafo 2-partido é chamado de bipartido, e uma
2-particdo de biparti¢ao. O menor r tal que G é r-partido é chamado de niimero cromatico
de G e denotado y(G).

Um conceito importante nessa pesquisa é o de um blow-up G de um grafo H, que é
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um grafo G em que, para cada v € V(H), existe S, C V(G) tal que
« {S, : v € V(H)} é uma particdo de V(H), e
« Para cada xy € E(G) e u,v € V(H), vale que (x,y) € S, xS, < uv € E(H).

Um blow-up é dito balanceado se todos os conjuntos S, tém a mesma cardinalidade. Se
um grafo G é subgrafo de um blow-up de um grafo H, dizemos que G é homomorfico a
H, e escrevemos G & H.



Capitulo 2

Resultados classicos

Nesse capitulo, apresentaremos resultados classicos sobre grafos livres de tridngulos,
bem como enunciamos a conjectura que iremos explorar nos demais capitulos deste
trabalho.

2.1 Estabilidade em grafos livres de triAngulos

Historicamente, um dos primeiros resultados provados no que futuramente viria a ser
conhecido como Teoria Extremal dos Grafos é o Teorema de Mantel.

Teorema 2.1 ([23]). Seja G um grafo livre de triangulos com n vértices. Entio e(G) < |n?/4].
Além disso, e(G) = |n? /4] se, e somente se, G é um grafo bipartido completo em que uma das
classes tem tamanho |n/2|, e a outra tem tamanho [n/2].

Omitimos a prova do Teorema 2.1 nessa se¢do. No Capitulo 3, apresentaremos uma
prova do Teorema 2.1 usando ferramentas modernas de Teoria Extremal dos Grafos, que
servira de motivacdo para o restante do Capitulo 3. De toda forma, provas elementares do
Teorema 2.1 podem ser encontradas nas referéncias basicas da area (ver [4]).

O Teorema 2.1 impde uma restricao bastante forte sobre grafos livres de triangulos
muito densos (isto é, grafos com muitas arestas). Ao mesmo tempo que se permite que um
grafo livre de tridangulos tenha aproximadamente metade das arestas “disponiveis” (uma

2
/. Ja ’ . e s (N n
vez que 0 niimero maximo de arestas possiveis em um grafo com n vértices é (2) ~2:7) ele
impde uma forte restri¢do estrutural sobre tais grafos: para cada n, existe essencialmente
um tnico grafo livre de triangulos com n vértices e e(G) = |n?/4|.

De forma paralela, podemos pensar em formas gerais de descrever grafos livres de
tridngulos e maximizar o numero de arestas disponiveis. Por exemplos, os grafos bipartidos
sdo claramente livres de tridngulos, pois para quaisquer trés vértices do grafo ha dois
na mesma parte pelo Principio da Casa dos Pombos, e tais dois vértices ndo fazem parte
de um triangulo pois nédo sao vizinhos. Além disso, um grafo bipartido G com biparticdo
V(G) = A U B possui, no maximo |A||B| = |A|(n — |A|) < |n?/4] arestas, com igualdade
se e somente se {|Al],|B|} = {|n/2],[n/2]}.
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Em conclusio, observa-se uma relacdo muito proxima entre a familia de grafos livres
de triangulos densos e a familia de grafos bipartidos, e o Teorema 2.1 sugere uma aproxi-
magcio entre as duas familias quando a densidade do grafo aumenta. E portanto natural
se perguntar se se estende tal analogia entre as duas classes de grafos: quao “distante”
pode estar um grafo livre de triangulos de ser bipartido? A nocao de distancia que iremos
utilizar é formalizada pela definicdo a seguir:

Definicao 2.2. Seja G um grafo. Definimos D(G) como o menor tamanho de um conjunto
de arestas F C Gtal que G — F := (V(G), E(G) \ F) é bipartido.

O préximo resultado é um teorema classico de estabilidade, e d4 uma resposta inicial
para a nossa pergunta.

Teorema 2.3 ([28]). Sejam > 0 um inteiro e seja G um grafo livre de triangulos com n
2

vértices e "I — m arestas. Entdo D(G) < m.

O Teorema 2.3 pode ser interpretado como um resultado estrutural: quanto mais arestas
queremos que um grafo livre de tridngulos tenha, mais restrita sera a estrutura desse grafo.
Esse paradigma voltara no Capitulo 4, quando em vez de usarmos o nimero de arestas para
parametrizar a densidade de grafos livres de tridngulos, usarmos o seu grau minimo.

A prova do Teorema 2.3 pode ser encontrada no Capitulo 3 de [4], mas os métodos
utilizados na prova do Teorema de Mantel que apresentaremos no Capitulo 3 permitem
obter resultados similares de estabilidade. Mais resultados relacionados a estabilidade em
grafos podem ser vistos em [16, 18, 29].

Para grafos com apenas poucas arestas a menos que n®/4, o Teorema 2.3 fornece uma
cota superior satisfatoria para D(G). Em 1975, Erd6s propos a seguinte conjectura para uma
cota incondicional sobre D(G), no sentido que ela ndo depende do numero de arestas de G.

Conjectura 2.4 ([11]). Seja G um grafo livre de triangulos com n vértices. Entdao

n2

D(G) < o5

A Conjectura 2.4 permanece em aberto no caso geral. Observe que o Teorema 2.3 prova
a Conjetura 2.4 para grafos com pelo menos 21n% /100 arestas. Além disso, se verdadeira,
a cota n?/25 é 6tima, pois um blow-up balanceado G de Cs (ver Figura 2.1) com n = 5m
vértices e m vértices em cada classe satisfaz D(G) = m? = n?/25. E facil ver que G é livre
de tridngulos e D(G) < m?, pois ao remover todas as arestas entre um par de classes da
particdo o subgrafo restante se torna bipartido. Por outro lado, segue do Teorema 2.6 que
existe uma colecio de “arestas grossas” de G cuja remogao deixa G bipartido e o total de
arestas removidas é igual a D(G), ou seja, D(G) > m?.

Os blow-ups serao amplamente utilizados nos capitulos a seguir no estudo da Conjec-
tura 2.4. Eles sdo grafos uteis porque se um grafo (grande) G é um blow-up de um grafo
(pequeno) H, entdo uma série de comportamentos em G “imitam os comportamentos analo-

» . A
gos” em H, e portanto podemos descrever certas propriedades de G usando os parametros
de H, que sdo menos e menores. O Teorema 2.6 abaixo deixara essa utilidade evidente,
mas antes de enuncia-lo e prova-lo precisamos definir de forma precisa a “analogia” entre
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Figura 2.1: Blow-up balanceado de C;

os grafos G e H.

Definicido 2.5. Seja G um blow-up de He seja V(G) = {S, : v € V(H)} uma parti¢io de H
que satisfaz a definicdo de blow-up. Dizemos que F; C E(G) é canonico se existe Ff C H
tal que
Fs= | E@GIS,uS,)D.
uveFy

Em outras palavras, um conjunto canoénico de arestas é tal que, entre cada par de classes
de V(G), ou adicionamos todas as arestas entre essas classes para o conjunto, ou nio
adicionamos nenhuma dessas arestas.

E prudente observar que a defini¢io de um conjunto candnico depende da escolha
da parti¢do de V(G) (que ndo necessariamente é unica). Em geral, essa escolha sera clara
do contexto.

Teorema 2.6 ([14]). Seja H um grafo livre de triangulos e seja G um blow-up de H. Entdo
existe F C E(G) canodnico tal que |F| = D(G) e G — F é bipartido.

Demonstragao. A prova usa um procedimento conhecido como simetrizacdo de Zykov. Em
linhas gerais, a ideia é que se u e v estdo na mesma parte e dz(u) > dz(v) para um certo
subgrafo bipartido Z de G, entdo trocar a vizinhanca de vem Z para Ny (u) ndo muda a
propriedade de Z ser bipartido, ndo diminui o numero de arestas de Z e o torna mais
“simétrico” de forma que esse procedimento pode ser realizado apenas finitamente.

Seja Z um subgrafo gerador de G tal que Z é bipartido e e(G) — e(Z;) = D(G). Vamos
definir Z, := Z e modificar Z;, sem diminuir seu nimero de arestas e garantindo que a
propriedade da biparticdo é mantida. Para isso, ordene as classes do blow-up H como
V(G) =1{51,S,, ..., S;} e aplique a seguinte operacdo sequencialmente para cada i € [n]:

» Tome x € §; com grau maximo em Z;_g;
« Paracada y € S; \ {x}, forme Z; substituindo a vizinhanca de yem Z;_; por Nz(x).

Perceba que pela maximalidade de N7_ (x), o nimero de arestas do grafo ndo diminui
a cada substituicao de vizinhancas. Além disso, a propriedade da biparticao é mantida:
depois de substituir a vizinhanca de y, coloque yna mesma classe da biparticdo que contém
X.
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Em Z,, todos os pares x, y pertencendo a mesma parte de {S;, S,, ..., S,} terdo a mesma
vizinhanca. Além disso, se xy € E(Z,) comx € S, e y € S,, entdo x'y € E(Z,) para
cada x” € S, (pela simetria em S,) e xy’ € E(Z,) para cada y’ € S, (pela simetria em
S,). Dessa forma, F := E(H) \ E(Z’") é um conjunto canénico de arestas de cardinalidade
e(H) — e(Z,) < e(H) — e(Zy) = D(H). Pela definicdo de D(H), segue que a igualdade vale,
e |[F| = D(H), como desejado. o

2.2 Avancos parciais na Conjectura 2.4

Ao longo dos anos, as tentativas de resolucdo da Conjectura 2.4 levaram a importantes
resultados parciais, e existem duas formas principais de obter resultados parciais na
direcido da Conjectura 2.4: restringindo a familia de grafos G (por exemplo, a um numero
maximo/minimo de arestas) ou provando cotas mais fracas para D(G). O seguinte teorema
foi usado para obter resultados parciais nas duas condi¢des (Corolario 2.8 e Teorema 2.9).

Teorema 2.7 ([13]). Seja G um grafo livre de triangulos com n vértices e m arestas. Entao

2 2m(2m?® — n’
n? 2 n?n®-2m)

Demonstracdo. A prova da desigualdade D(G) < m — 4m?/n?, bem como a ideia principal
por tras da contagem que leva a cota D(G) < m/2 — 2m(2m? — n3)/n?(n® — 2m), serdo
generalizadas na Secio 3.2.1. Por ora, provaremos apenas D(G) < m — 4m? /n?, utilizando
um argumento simples de contagem que incorpora importantes propriedades de grafos
livres de tridngulos, as quais usaremos para localizar subgrafos bipartidos grandes.

Para cada vértice v € V(G), defina o conjunto F, := V(G) \ Ng(v) (os ndo vizinhos de
v, incluindo o préprio v). Note que D(G) < |F,| para qualquer vértice v, pois a biparti¢do
{NG(v), V(G) \ N5(v)} possui exatamente |F,| arestas dentro da segunda parte, e a primeira
¢é independente. Assim, temos que

1
D(G) < min |E|< - E). 2.1
BRI @

Observe que se xy € F,, entao v € V(G) \ (Ng(x) U N5(y)), logo cada aresta xy € E(G)
pertence a no maximo n — dg(x) — dg(y) conjuntos F,. Aplicando essa cota em (2.1), temos

1
DG)<= > |F)
n,ev(o)
1 1
<= ) (m—dg) —dgy) =m—= ), dg(x)?
n xy€E(G) n x€V(G)
( 2xev(G) do(x) )2 4m?
<m—-|———) =m-—-.
n n
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Corolario 2.8 ([13]). Se G é um grafo livre de triangulos com n vértices, entio D(G) < n?/18.

De fato, o resultado de [13] é mais justo: analisando os casos proximos a igualdade,
é possivel provar que existe ¢ > 0 tal que D(G) < (1/18 — £)n?. A anélise é direta, mas
nao trivial.

Teorema 2.9 ([13]). Para todo n inteiro positivo, a Conjectura 2.4 é verdadeira para grafos
com n vértices e pelo menos n?/5 arestas.

O Teorema 2.9 d4 uma melhora aparentemente pequena sobre a cota inferior de
e(G) para a qual a Conjectura 2.4 é valida: de e(G) > 0.21n usando o Teorema 2.3 para
e(G) > 0.20n? usando o Teorema 2.9. Porém, acontece que e(G) > n?/5 nio é apenas uma
melhora pequena, mas também um “limiar estrutural” para grafos livres de tridAngulos
longe de serem bipartidos.

Teorema 2.10 ([14]). Seja G um grafo livre de triangulos com n vértices e pelo menos n®/5
arestas. Entao existe um grafo H* também com n vértices tal que H* é um blow-up de Cs e,
além disso, e(G) < e(H*) e D(G) < D(H™).

E facil ver que max,(+)>p, D(H”) (maximo tomado sobre os blow-ups H* de Cs) é
decrescente em m para m > n?/5, o que da uma cota melhor que n?/5 para e(G) > n?/5,
condicionando no valor de e(G). Do resultado do Teorema 2.10 também segue que o tnico
exemplo extremal para a Conjectura 2.4 quando e(G) > n?/5 sio os blow-ups balanceados
de Cs. Nao é conhecido nenhum outro exemplo extremal.

Omitiremos a prova completa do Teorema 2.10 e daremos apenas um brevissimo esboco.
As técnicas utilizadas néo serao replicadas em outras partes desse trabalhos e requerem
muitos cuidados com as contas. Os detalhes podem ser encontrados em [14].

Esbogo da demonstracao do Teorema 2.10. Definimos os dois conjuntos que formam a
“quase biparti¢ao” do grafo de forma algoritmica. Primeiro, escolnemos uma aresta xy com
ds(x) + dg(y) maximo e os conjuntos da biparticdo A; := Ng(x) e Ay := Ng(y). Como G é
livre de triangulos, cada vértice de G pertence a no maximo uma dessa partes. Além disso,
se e(G) > n? /5, entio é facil ver que o nimero de vértices que ainda néio tem lado definido
é no maximo n?/5. Iterativamente, adiciona-se sequencialmente cada um dos vértices
restantes a A; ou A, de forma a minimizar o nimero de arestas “monocromaticas” (isso é,
entre vértices da mesma parte) a cada passo. Esses novos vértices formam conjuntos C; e
C,, respectivamente.

A partir desse ponto, a prova segue dois caminhos:

« Se existe algum vértice x; € C; UC, (suponha sem perda de generalidade que x, € C;)
que tem pelo menos |C; U Cy| vizinhos em Cy, entéo é possivel definir os tamanhos
das classe de H* usando os conjuntos que ja temos e as vizinhancas de x, em C; e
C,. As definigdes precisas dos tamanhos das classes sdo omitidas aqui.

« Se ndo existe tal vértice, entdo usando conjuntos de arestas duas a duas disjuntas
(de tamanho cotado superiormente) em A; U C; e em Ay U Cy, é possivel descrever
os tamanhos das classes de H* de forma similar. Os detalhes numéricos desse caso
também sao omitidos aqui.
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A analise dos casos acima finaliza a prova. [

Por fim, apresentamos uma conjectura relacionada a Conjectura 2.4:

Conjectura 2.11 ([11]). Seja G um grafo livre de triangulos com n vértices. Entdo existe
X CV(G) com X = |n/2] tal que e(G[X]) < n?/50.

Posteriormente, Erdés ofereceu um prémio monetario de $ 250 para uma prova ou
contraexemplo da Conjectura 2.11 [12].

Resultados similares ao Teorema 2.9 foram verificados para a Conjectura 2.11 [20]. Além
disso, Krivelevich observou (ver [21]) que a Conjectura 2.11 implica a Conjetura 2.4 para
grafos regulares: se X é o conjunto fornecido pela resposta a Conjectura 2.11 para G, entdo
e(G[X]) = e(G[V(G) \ X]) pela regularidade de G, e segue que o subgrafo bipartido de G
induzido pelas partes X e V(G)\ X tem, no méximo, 2n? /50 = n? /25 arestas a menos que G.



Capitulo 3

Algebras de flag

Neste capitulo, introduzimos alguns aspectos do poderoso método de algebras de flag,
introduzido por Razborov em 2007 [25]. O método tem sido usado de forma diversa para
obter resultados acerca de problemas em combinatéria extremal, particularmente pela
sua capacidade expressiva de representar densidades e homomorfismos de estruturas
combinatorias variadas (grafos, grafos orientados, permutagdes...) Para uma viséo histérica
do uso das algebras de flag e resultados importantes alcancados ainda nos primeiros anos
apos a introdugdo do método, recomendamos [26].

Nesse capitulo, introduzimos a teoria de algebras de flag aplicada a grafos simples e
densidades de subgrafos. A estrutura é fortemente baseada na exposicdo de [17] e também
em [8]. Deixamos muitos dos detalhes técnicos das defini¢des de lado em um primeiro
momento, focando em uma abordagem pratica que motive a utilizacdo das algebras de
flag para problemas extremais em grafos livres de tridngulos.

3.1 Conceitos iniciais

3.1.1 Densidades

Sejam Fe G grafos quaisquer. Definimos a densidade de F em G (denotada d(F, G)) como o
numero de subgrafos induzidos de G com |F| vértices que sdo isomorfos a F. Analogamente,
d(F,G) é a probabilidade que um conjunto de |F| vértices de G, escolhido uniformemente
ao acaso, induza um subgrafo isomorfo a F.

Fixe um grafos F e G com |F| < |G|. Para calcular d(F, G), podemos escolher um inteiro
I com |F| < I < |G| e escrever

d(F,.G)= Y d(F,H)d(H,G). (3.1)
V()=

A igualdade ¢é valida porque amostrar um subconjunto S C (V(IG )) uniformemente ao acaso

V(G))‘

e depois amostrar um subconjunto T C (“‘3') segue a distribuicdo uniforme em ( 7|

11
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Agora, denote por 97@ a familia dos grafos livres de tridngulos com [ vértices (a menos
de isomorfismo). Para a configuracio geral de algebras de flag, a familia “proibida” pode
ser qualquer conjunto finito de grafos, que no nosso caso é simplesmente {K3}. Se G é um
grafo livre de triangulos, entdo por (3.1) vale que

d(F,.G)= Y. d(F,H)d(H,G). (3.2)
HeZF?

Essa expressao é comumente referida como uma regra da cadeia no contexto de algebras

de flag.

Muitos problemas tipicos em Teoria Extremal dos Grafos, como o proprio Teorema de
Mantel, sdo problemas de minimizac¢io de uma expressio do tipo d(F, G), e frequentemente
desejamos utilizar (3.2) para simplificar os calculos de densidade. Por exemplo, usando
ZHEGJIQ d(H,G) = 1 temos d(F,G) < Maxye go d(F, H). Essa cota é um resultado “finito”,
pois enquanto G é um grafo em geral muito maior que F, o parametro [ é algo que podemos
tentar controlar para obter resultados mais refinados.

Contudo, essa cota em geral é bastante fraca, e um grande desafio é de gerar desigual-
dades lineares entre densidades que sejam mais sofisticadas que a regra da cadeia. Mais
especificamente, seria interessante ter desigualdades da forma

> ep-d(H,G) >0, (3.3)

HeF?

onde os cy’s’ sdo constantes reais, potencialmente negativas, que possam ser usadas para
balancear as densidades de um e outro subgrafo de G. Logo, poderiamos obter de (3.2)
a desigualdade

d(F,G)< . (cg+d(F, H))d(H,G) < max (cgr+ d(F,H)).

o]
HE%Q HEJI

Novamente, esse tipo de desigualdade permitira cotar superiormente o valor de d(F, G) para
grafos “grandes” G usando apenas informacdes “finitas”, vindas de F, de [ e da desigualdade
na forma de (3.3).

Na verdade, o método semidefinido permitira obter desigualdades na forma

cyg-d(H,G)+0(1) >0, (3.4)
>
HeF?

onde o termo o(1) vai para zero quando |G| cresce, e portanto a cota superior obtida
para d(F,G) sera

d(F,G) < max (cyg+ d(F,H)) + o(1). (3.5)
HeZFf

Em geral, esse tipo de resultado é suficiente quando a compreenséo assintotica é suficiente.
Veremos no caso do Teorema 2.1 e posteriormente no caso da Conjectura 2.4 que argu-
mentos com blow-ups podem ser usados para transferir os resultados assintoticos para
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grafos de qualquer tamanho finito. Ou seja, o termo o(1) em (3.4) podera ser controlado
para as aplicacdes visadas nesse trabalho.

3.1.2 O Teorema de Mantel

Nessa secdo, iremos provar o Teorema 2.1 usando técnicas de algebras flag que sao
simples descrever e que serdo generalizadas no que se segue da exposicao do método
geral. Iremos usar representacdes visuais para grafos como usual, de forma que ./ é um
grafo isomorfo a Kj, v é um grafo isomorfo a ({a, b, ¢}, {ab, ac}) e assim por diante. A
motivacdo para isso, além de facilitar a leitura, é de deixar claro constantemente quais grafos
sdo “pequenos” e podem ser vistos como parametros ou variaveis do método, enquanto
quando escrevermos G para representar um grafo como em d (\/”, G), tipicamente estamos
pensando em G como um grafo com n vértices e no comportamento assintético dessa
densidade quando n tende a infinito.

O Teorema de Mantel pode ser reescrito da seguinte forma: para todo grafo G livre
de triangulos com n vértices, temos

n2
1(.0) < Tt =+ ol
2

em que o termo de erro o(1) vai para zero quando n tende a infinito.

Usando [ = 3 em (3.2), temos

d(/.6)=d(/°,7)d(,%0) +d( A7) d([76) +d(A V) d(V.6),

ou simplesmente

d(,/.G) = %d('f', G) + %d(v, G). (3.6)

Com isso, vemos que d(*,G) < 2/3. Mas isso é bem mais fraco que o Teorema de
Mantel, entdo vamos buscar uma desigualdade na forma de (3.4) que nos permita concluir

d(,/”.G) < 1/2 + o(1).
A desigualdade em questdo sera
%d('.', G) - %d(':', G) - %d(v, G) +o(1) > 0. (3.7)
Assumindo (3.7) e somando com (3.6), temos
d(/.6) < 3d(°,"0) + 3d(77.6) + 2d(\/6) +o() <  +0(1)

como desejado. Entdo nos resta descobrir como gerar a desigualdade “magica” de (3.7).

Fixe um vértice “especial” v € V(G) (que representaremos como o). Definimos densi-
dades em G” com um vértice especial da mesma forma que quando G néo tinha vértices
especiais, mas agora calculando a densidade de subestruturas que também tenham um

13
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vértice especial. Por exemplo, d (:/ S GD) é a probabilidade de que um vértice u € V(G)\ {v},
escolhido uniformemente ao acaso, seja vizinho de G.

Observe que

d( 6" —d(, *.6®)" >0, (3.8)

e portanto
d(/.G7)° = 2d(/.G)d(, *.G7) +d(, *.67)° > 0. (3.9)

O produto d (., GE')2 ¢ a probabilidade que dois vértices escolhidos aleatoriamente ao
acaso (com reposicéo) em V(G) \ {v} sejam ambos vizinhos de G. A probabilidade que esses
dois vértices sejam iguais é 0(1) quando n — +oo, e se eles sdo distintos, entdo os dois
(junto com v) induzem um subgrafo isomorfo a v (pois G é livre de tridngulos). Ou seja,

d(.G7)° =d(\/.G7) +o(1).
De forma analoga, é possivel provar

d(.GP)d(, *.G°) = %d('?, G°) + %d('{, G7) + o(1), (3.10)
d(y %) =d("% G +d(°, % G7) +o(1). (3.11)

Substituindo (3.10) e (3.11) em (3.9), obtemos

d\,.G")-d(*7.G")-d(*L.GM)+d(*°.GY) +d(*,°.G7) +o(1) 0.  (3.12)

Obtivemos assim uma igualdade que se assemelha a igualdade (3.7), mas com densidades
de conjuntos de 3 vértices contendo um vértice especial vde G~ em vez de densidades em
G para subconjuntos de tamanho 3 escolhidos ao acaso e sem vértices especiais.

Para obter a relacdo desejada, iremos simplesmente escolher vuniformemente ao acaso!
Isso também pode ser pensado de forma deterministica como a média de (3.12) por todas
as escolhas possiveis de v € V(G).

Escolhendo v aleatoriamente, temos que

1
E[(V.69) = la(\.6).
pois para cada subgrafo induzido de G que é isomorfo a \/ existe apenas uma dentre

as trés escolhas possiveis para o vértice especial v tal que o grafo “rotulado” resultante
¢ isomorfo a v De forma similar, temos

E[4(7.67)] =3d(\V.0).  E[d(L.67)] =2d(770).

E[d(ZN67)] =3d(%0).  E[a(.N6)] =d(,%0).
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Portanto, segue de (3.12) que

24(\/.6) - %d(V,G) - %d('f',G) + %d('f',G) +d(*,%G) +o(1) >0,

que é o mesmo que
d(*,*.G) - %d('f',G) - %d(V,G) +0(1) > 0,

que é um multiplo de (3.7). Assim, provamos que se G é um grafo livre de tridngulos,
entdo d(,/*,G) < 1/2 + o(1).

Para provar a versio original do Teorema de Mantel (ou seja, que e(G) < n?/4 em vez
de e(G) < n?/4+ o(n?)), tome um grafo livre de triangulos G qualquer e considere blow-up
balanceado Gy de G em que cada vértice de G é substituido por um conjunto independente
de tamanho N. Entéo, pela versao assintotica do Teorema de Mantel que provamos, vale

2|G|2

e(Gy) < %(MZ ') o(1) < 20 1 oN),

Além disso, e(G) = N2e(G), portanto e(G) < |G|?/4+0(N?)/N?. Fazendo N — oo, obtemos
e(G) < |G|?/4, pois e(G) é inteiro. Esse argumento conclui a prova do Teorema de Mantel.

A estratégia apresentada no esboco acima reflete bem a estratégia geral que utilizaremos
quando formos provar algum resultado mais sofisticado com algebras de flag:

1. Comecamos fixando um subgrafo especial o (no caso de Mantel, 0 = otem apenas um
vértice) para uma desigualdade quadratica (3.8) envolvendo as densidades relativas
a uma copia fixa de o em G;

2. Multiplicamos tais densidades relativas a o adicionando termos de erro para obter
desigualdades lineares com as densidades relativas a o (3.10);

3. Escolhemos aleatoriamente um subgrafo induzido de G isomorfico a o para associar
as densidades de subgrafos com o fixado a densidades de subgrafos sem essa restricdo.

A principio, todos os passos acima podem ser automatizados, exceto a obtenc¢ao da
desigualdade quadratica inicial. Essa desigualdade deve satisfazer a hipdtese de ser ndo
negativa para toda escolha de densidade envolvida. Para obter desigualdades dessa forma,
utilizaremos matrizes positivas semidefinidas. Se X é um conjunto finito qualquer, entédo
as matrizes positivas semidefinidas no espaco RX*X sdio as matrizes A que satisfazem
vTAv > 0 para todo v € RX. Denotamos o subconjunto de R*¥*X formado por essas

matrizes por Sff.

A ideia é escolher uma desigualdade da forma v Av > 0, onde v é um vetor com todas
as densidades de certos subgrafos bem escolhidos e A é uma matriz positiva semidefinida.
Por exemplo, podemos reescrever (3.9) como

. 1 d GY)
46 a6l | [aE G

> 0.
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De fato, poderiamos ter comecado com uma matriz positiva semidefinida genérica A =
[011 a2

a2 A
entdo que d(,*,G) < d* + o(1), onde d* ¢ o valor 6timo do programa semidefinido

]. Encontrando os coeficientes de (3.4) e cotando em (3.5), poderiamos provar

Minimizar max{g+la + —aq9,— + —a +1a a}
3 311 312’3 312 322’22

. ap, a
sujeito a [ 1 12] e $2.
ay2  d2

3.1.3 A algebra

Fixe # uma familia de subgrafos proibidos. Um tipo de tamanho k é um grafo #-livre
o com V(o) = [k]. Denotamos o tipo vazio como @. Um o-flag é um par (F,0), em que F
é um grafo #-livre tal que 0: [k] — V(G) é injetora e define um isomorfismo entre o e
G[Im(0)]. Em outras palavras, um tipo é um grafo (pequeno) com todos os seus vértices
rotulados/especiais, enquanto um flag ¢ um grafo parcialmente rotulado de acordo com
um tipo. Note que todo grafo G esta naturalmente identificado com o @-flag (G, @).

Definimos isomorfismos entre flags da mesma forma que entre grafos, mas também
preservando o isomorfismo nos vértices rotulados: dois o-flags (G;, ;) e (Gy,0;) sdo iso-
morfos se existe um isomorfismo p: V(G;) — V(G,) tal que p(6,(i)) = 6,(i) para cada
i € [|o|]. Finalmente, definimos & como o conjunto de todos os o-flags de tamanho m,
a menos de isomorfismo e F7 = Ups (4| Fim-

Para definir densidades, sejam (G, 0), F;, F,, ..., F; flags com

t
Gl = ol > Y (E| - lo)).
i=1

Definimos a densidade d(F;, F, ..., F;, G) como a probabilidade de que, ao escolher con-
juntos dois a dois disjuntos Uy, Uy, ..., U; C V(G) \ Im(0) com |U}| = |F| — |o]|, vale que o
o-flag (G[U; U Im(0)], 6) é isomorfico a F, para cada i € [t]. Quase sempre usamos apenas
t=1et = 2.

O seguinte teorema permite a manipulaciao de densidades multiplicativas.
Teorema 3.1. Para F|,F, € %7 eG € F° com |G| > |F| + |E| — |o], vale que

d(F;,G)d(F,,G) = d(Fy, F,,G) + O(IGI™).

Agora que introduzimos os conceitos e objetivos gerais quando estamos resolvendo um
problema usando algebras de flag, vamos formalizar alguns dos conceitos que apresentamos
para simplificar as aplicacdes posteriores. Como visto, o objetivo geral do método aplicado
a problemas de densidade e homomorfismos € obter desigualdades néo triviais da forma

ad(E,G) +o(1) > 0, (3.13)
>

EeF’
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onde [ é fixo e G € F? ¢ um grafo (nio rotulado) arbitrario. Para isso, vimos que é
interessante considerar desigualdades na forma ), FeF’ @;d(F;,G) +0(1) > 0, onde G €
F° é um grafo “grande” e aplicar um operador linear (associado a uma distribuicéo de
probabilidade) que gere uma desigualdade da forma de (3.13).

Como pensamos em G como grande e arbitrario, podemos ver as somas
Y rege 4d(F,G) como acdes de F° sobre RF. Ou seja, vamos considerar as somas
i€

formais de o-flags e deixar um grafo G agir sobre elas através de ) ;c;a;F; = Y ic;aid(F, G).
Note que, de (3.2), todo elemento da forma

F— > d(F,F)F (3.14)
FeFf’

é levado a 0 por qualquer dessas agdes. Defina o espago quociente &/ :== RF /%, onde
H? é o subespacgo gerado pelos elementos da forma (3.14).

Finalmente, é importante definir uma nogao adequada de multiplicacio nesse espago
vetorial para manipular a multiplicacdo de densidades. Assim, também transformaremos
&/° numa algebra. Para F| € ‘%lf eF, € 91;7 el >1 +1, —|o|, definimos

F-F= Z d(F,, F,, F)F,
FeF’

e definimos a multiplicaciio sobre &/? expandindo essa definicio bilinearmente. E possivel
provar (ver [25]) que essa operacdo de multiplicacao esta bem definida em &/, ou seja,
que nao depende da escolha de [. Defina o mapa

$o: Y, aF €A’ Y ad(F,G)ER.

Pelo Teorema 3.1, ¢ pode ser visto como um “homomorfismo aproximado” de &/ para R.

Por clareza, apresentamos alguns exemplos de igualdades em &/? e em o/™:

1 2
R aA v
=N +Y
[ ] 1. 1
\:/ = J + _?'

2 2
Muitas vezes, quando estamos querendo provar algum resultado de densidade, co-
mecamos com desigualdades de densidades com vértices especiais rotulados de acordo
com um tipo o. Para transferir esse resultado para grafos nao rotulados (i.e., @-flags),

escolhemos aleatoriamente onde alocar 0 em G. Em algebras de flag, esse formalismo sera
realizado por operadores lineares

[ : o> at°

que representam essa “média”.

Para F € %7, definimos [F] := q(F) |F, onde |F € % é uma cépia de F em que os

17
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rétulos especiais sdo esquecidos, e g(F) é a probabilidade que um homomorfismo injetor
0: [|lo]] = V(IF), escolhido uniformemente ao acaso, satisfaca que (}F,0) é isomorfico a F.
Em seguida, estendemos [-] linearmente para &/°. Por exemplo, temos

-2 By7l-ive [ H] -

Note que os ( ) flags Eé‘j Dk nao sao isomorficos. Como esse tipo tem mais de

um vértice, é importante rotula—los. Ao contrario, no tipo de tamanho 1 o rétulo nao é
relevante. O seguinte teorema sera essencial para as aplicagdes futuras de algebras de flag.

Teorema 3.2. Seja F um o-flag e G um @-flag com |G| > |F| e d(l{o,G) > 0. Entdo, se 0 é
escolhido uniformemente ao acaso entre todas as injecoes 0: [|o|] — V(G) com G[Im(6)]
isomorfico a o, vale que

q(F)d(IF,G)

Eg[d(F,(G.0))] = 117G

Finalmente, iremos lidar com a noc¢do de “homomorfismos aproximados” de /° aR e
como recuperar de toda a linguagem algébrica introduzida a informacéo sobre densidades
em grafos para o problema original. Para cada o-flag G, podemos associar um vetor (de
dimensio infinita) (d(F, G))peze € [0, 1]7°. Se (Gri>o € uma sequéncia de o-flags tal que
tal que d(F, Gy) converge para todo F € F, entdo dizemos que (Gy)x>o é convergente. Pela
compacidade de [0, 1] e 0 Teorema de Tychonoff, o espaco [0, 1]7 " com a topologia produto
¢ compacto. Logo, toda sequéncia infinita (Gy)x>o de o-flags possui uma subsequéncia
infinita que é convergente.

Para cada sequéncia convergente (Gy)x> em [0, 1]7°, existe um homomorfismo (entre
espacos vetoriais)

$p: FEF'— klim d(F,Gy) € R
—+400

que pode ser estendido para um homomorfismo (entre algebras) ¢: o/° — R. Esses
homomorfismos serdo chamados de homomorfismos funcionais. Dessa forma, se vale uma
desigualdade )’ a;F; > 0 em &/°, entdo também vale ¢ () ¢;F;) > 0 para todo homomorfismo
funcional ¢, e logo )’ a;d(F;, G)+0(1) > 0 para toda sequéncia convergente (G)g>o, onde o
termo o(1) vai para zero quando |G| vai para infinito. Escolher (Gy)x>¢ como uma sequéncia
de blow-ups balanceados de um grafo base sera suficiente para as aplica¢des desse trabalho.

Vamos mostrar mais uma vez o Teorema de Mantel usando a expressividade da algebra
que acabamos de desenvolver. Comecamos com

2
" -5°)"2
Assim, temos

DA T 1)
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e multiplicando obtemos
V_?_E(+D+DZO'
Aplicando [-], segue que

lv_gv_z.—.+l.—.+. .2O=}..—1H—l >0.
3 3 3° 3° * * 3° 3

Dividindo por 2 e somando a igualdade

_le—w 2
/_3.+3v’

obtemos

Logo, toda sequéncia infinita de grafos livres de triangulos (Gy)x>o possui uma subse-
quéncia (G Jk>ocom d(/, G,-k) < 1/2 +0(1). Tome G; qualquer e para cada N > 2 defina
Gy como um blow-up completo balanceado de G, em que cada vértice de G, é substituido
por um conjunto independente de tamanho N.

Entdo para alguma sequéncia N; < N < ... vale d(/, GNk) <1/2 +0o(1). Mas

_ Ze(GNk) . 2Nk2€(G1) _ Ze(Gl)
d(,/.Gx,) = O +0(1) = NG +0(1) = Gt o(1),

logo e(G;) < (1/4 + o(1))v(G;)?, e como o termo o(1) pode ser tornado arbitrariamente
pequeno, obtemos e(G;) < v(G;)?/4 para qualquer escolha de G;.

3.2 Aplicacoes

Vamos retomar a prova do Teorema 2.7 a partir do ponto de vista de algebras de flag.
Seja G um grafo livre de tridngulos com n vértices. Sabemos que, para todo vértice v € V(G),
o conjunto A, := E(G — N(v)) de arestas entre os nao vizinhos de v é tal que G — A, é
bipartido considerando as classes (N(v), V(G) \ N(v)). Portanto D(G) < min,cy(c) Ay,
ou ainda D(G) < E,cy(G) [|A,l], onde v € V(G) é escolhido aleatoriamente ao acaso.

Isso nos mostra que é possivel modelar certas escolhas de biparticdes e, portanto, de
arestas que precisamos contar/deletar a partir de um unico vértice especial e de uma estra-
tégia de biparticdo. Na linguagem de algebras de flag (sobre os grafos livres de tridngulos),
a primeira parte do Teorema 2.7 pode ser escrita da seguinte forma:

*—o

o = 2/25 para todo flag G~ obtido de G rotulando um vértice especial,

Teorema 3.3. Se
entdo /° < 2/5.

Demonstragao. Primeiro, vamos fixar o tipo o de tamanho 1, e os inteiros [ =3 em = 2
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(assim como no Teorema de Mantel). Da desigualdade

(S| i

a2 a4z

B

1
<3011+ a12>v+( (112+3(122> . +a22...20.

segue

Além disso, [/ = v+ 3 e *—*, logo da média sobre todas as escolhas de G° vale que
[*°] =2/25 = Vz o5 € assim temos
6 (2 1 2 > (1 2 1 )o—o o o
+—=x<|-+-a1+-a +|-+=ap+ -axp+x +a
S rgmt i) V(343 je o T2
2

<max{z+la +-a l+ga +la +xa}
> 3 g1 T g2, T gl T o2 »d22( -

Finalmente,

/<max{ +1a +2a 1+za +1a +Xx,a }—ix
R e I R 2 25
11

a2 6122
nidos pode ser usado para encontrar que o minimo da expressdo acima é 2/5. O]

> 0 e x > 0. Um software que resolve programas semidefi-

para toda escolha de [

3.2.1 Cortes locais
Em [18], os autores provam a seguinte conjectura de Sudakov (ver [29]):

Teorema 3.4. Seja G um grafo Kq-livre com n vértices. Entdao G pode ser tornado bipartido
deletando no maximo 4n® /25 arestas.

O principal ingrediente dos resultados provados em [18] é a utilizacdo de algebras de
flag para expressar os chamados cortes locais. O Teorema 3.3 mostra como podemos definir
cortes (ou seja, subgrafos bipartidos grandes) a partir de um tnico vértice, e também como
utilizar algebras de flag para expressar a densidade de arestas fora de cada um desses
cortes. Essa técnica também foi utilizada em [2, 24] para definir parti¢cdes a partir de outros
conjuntos pequenos de vértices.

Por exemplo, se G ¢ livre de tridngulos e uv € E(G), entdo é possivel definir uma
biparti¢do de V(G) com N(u) em uma das partes, N(v) em outra das partes e, para cada
vértice em V(G) \ (N(u) U N(v)), decidimos uniformemente ao acaso com probabilidade
1/2 em qual das partes definidas por N(u) e N(v) ele sera colocado. A escolha é feita de
forma aleatoria porque sabemos que o maior corte (deterministico) que pode ser gerado
tem tamanho pelo menos o valor esperado do tamanho do corte na escolha aleatoria, e
é facil calcular o valor esperado.

Se nenhum desses cortes deixa no maximo n?/25 arestas de fora, entio a densidade
esperada das arestas fora de qualquer um desses cortes definidos localmente é pelo menos
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2/25, o que pode ser expressado da seguinte maneira, onde as densidades sdo tomadas
sobre um flag G° com uma néao-aresta uv rotulada:

o

O seguinte resultado demonstra o poder do método de cortes locais para obter cotas
significativamente melhores para resultados parciais na dire¢ao da Conjectura 2.4.

1 D—EI — (3.15)
1

Do |
N |
[\.')Ir—x
[\
U‘l

Teorema 3.5 ([2]). Seja G um grafo livre de triangulos com n vértices. Entdo, vale que

1. D(G) < & ﬁ

2. D(G) < g see(G) > 0.3197(});

3. D(G) < % se e(G) < 0.2486(,).

Contudo, os autores de [2] ndo descreveram o método e software utilizados para obter
tais resultados, e ndo podemos reconhecer facilmente a escolha de desigualdades advindas
de cortes locais que os autores tentaram adicionar ao programa semidefinido cuja solucéo
leva ao Teorema 3.5. A seguir, oferecemos como complemento ao resultado de [2] uma
explicacido mais detalhada e abrangente de como restri¢des a moda de (3.15) podem ser
formuladas e implementadas computacionalmente para gerar resultados parciais para
a Conjectura 2.4.

De forma precisa, um corte local é definido a partir de um tipo o de tamanho k (nos
exemplos que ja vimos, usamos os tipos o e ?_g ) e uma funcio p : P(V(s)) — [0,1].
Seja G um grafo livre de tridangulos com n vértices (pensamos em n como um parametro
grande) e S C V(G) tal que G[S] é isomorfo a 0. Seja também pg : P(S) — [0, 1] o analogo
de p em S dado pelo isomorfismo entre G[S] e 0. Defina uma biparti¢ao aleatdria (A, B)
de G — S em que cada elemento v € V(G) \ S é adicionado a parte A com probabilidade
ps(Ng(v) N S) ou a parte B com probabilidade 1 — ps(Ng(v)). Se 0 = e pg = 1.0, pg,y = 0.0,
essa ¢ a biparti¢do deterministica da primeira parte do Teorema 2.7. Os vértices de S podem
ficar em qualquer lado da biparti¢do, porque como k é constante em relagio a n, as arestas
adjacentes a S sdo O(n) no total.

Assim, o numero esperado de arestas fora do corte gerado pela biparticdo (A, B) é

om+ Y, (pxpy+(1—p( - py)Imxy,
X, YCV(S)
X<Y
onde myy é o nimero de arestas uv € E(G—S) com N5(u) NS = Xe Ng(v) NS =Ye <
é uma ordem total qualquer em P(V(0)).

Para X,Y C V(0), seja Fy y € F,, o flag que tem dois vértices ndo rotulados conecta-
dos por uma aresta, um deles ligados a X em ¢, e o outro ligado a Y em o. Assim, podemos
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assumir que, para qualquer escolha de S, vale que

n— k nz
om+ Y, (pxpy+(1—p(- py))( ) )d(Fj‘(,Y, SR
X,YCV (o)

2 1
= ) (oxpr+ (- p)(1 - p)d(Ffy,G7) 2 = + o(_),
X, YCV(o) n

onde G é o grafo em que rotulamos S como sendo o. Escolhendo S aleatoriamente e usando
o Teorema 3.2 (supondo que d({o,G) > 0), vale que

4(FE DAFS 1, G)
(@0~ o

> (oxpy + (1= px)(1 = py)
X,YCV(0o)

Omitindo G e o termo o(1), que ja sabemos que podemos omitir, obtemos finalmente

> (pxpy + (1= px)(1 = py)) [FSy] 2 % [o]. (3.16)
X,YCV (o)

Observe que essa tltima desigualdade vale mesmo no caso [o] = 0, pois ai também teriamos
[[F j'(y]] = 0 para cada escolha de X e Y. Chamamos essa desigualdade de uma (o, p)-restrigao.

Também sabemos que podemos gerar restri¢cdes escolhendo um tipo 7, um inteiro
m > || e, listando FZ = {F, F,,..., F;}, para qualquer A € $% vale que

{
> Ay [EF] >o. (3.17)
ij=1

Chamamos essa desigualdade de uma (;r, m)-restrigdo.

3.2.2 Construindo o programa

Note que uma (o, p)-restri¢io é escrita em termos de elementos de ‘QYI?I 4g> € Uma (7, m)-

restricao é escrita em termos de elementos de ,sz@m_m e variaveis que correspondem a
matrizes positivas semidefinidas.

Fixe uma colecdo {(o1, p1), (09, p2), ..., (0, p)} de (o, p)-restricdes e uma colegio
{1, my), (7r2, my), ..., (;r, my)} de (r, m)-restri¢des. Tome m > max;(|oj| +2), max;(2m;—|j]).
Usando (3.14), podemos escrever as r + s restricoes como desigualdades em /2.

De forma mais explicita, uma (o, p)-restricio pode ser reescrita em &2 como

Z( Y, (pxpy+ (1= px)(1 = py)) ([F] [[F;?,y}])—%[man)pzo,

FeF2 \X,YCV (o)

onde [F]F’ é o coeficiente de F quando F’ é expandido em termos de flags de ordem |F|.
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Escreva cada uma das (o, p)-restricdes como

> «(F)F >0, (3.18)

FeF?

onde os c(F)’s sdo coeficientes ndo negativos. Analogamente, uma (7, m)-restri¢ao pode
ser reescrita como

{ ?
Z Ayl F] [[FIF]]] F20 < Z (Z dij(F)Aij)F 2 0. (3.19)

ij=1 Feg? \ij=1

Finalmente, escreva

S = > bFF. (3.20)

FeF?

Combinando as equagdes (3.18), (3.19) e (3.20), obtemos

r s B
S (b(F) + > (B o+ . Y. digi(F) - (Ak)ij) F
i=1

FeF? k=11j=1

r s B
< max (b(F) + Z ¢(F) a5 + Z Z dyij(F) - (Ak)ij)»

o @
onde aq,a, ..., > 0 sdo escalares.

Finalmente, podemos montar o seguinte programa semidefinido para encontrar o valor
6timo da expressao acima:

Minimizar M

.
sujeitoa M — Z ¢(F)

i=1

s £
- Z Z drij(F) (Ap);j > b(F), paracadaF € F2,
k=11,j=1
M >0,
a; >0, para cadai € [r],
A € Sff, para cada k € [s].

Se d* é o valor 6timo desse programa, entdo a Conjectura 2.4 esti provada para grafos
d* S, . -
com pelo menos 7n2 arestas. O nosso objetivo, é combinar (o, p)-restri¢des e (rr, m)-

restri¢cdes que gerem valores menores de d*.

Escolher bons valores de o e p é um desafio porque o nimero de restri¢des geradas
cresce exponencialmente, e para |o| > 5 ja é impraticavel gerar todas as (o, p)-restricdes
sem escolher “a mio” valores de o e p. Em [2], os autores comentam pelo menos duas
escolhas de (o, p)-restricdes com |o| = 6, uma delas formulada especialmente para lidar
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com o grafo de Clebsch, um grafo de Cayley que é descrito como “particularmente hostil”
com respeito a estratégia de cortes locais.

Estamos desenvolvendo uma implementagao do método de [2] que pode ser encontrada
em https://github.com/Marcelo-ML/flag-algebras. Até o momento da conclusio desse
trabalho, ndo conseguimos reproduzir os resultados do Teorema 3.5. Estamos buscando
estratégias de otimizacdo e incorporagio de novas restri¢des locais que permitam agilizar a
geracdo dos programas definidos correspondentes. Conforme sugerido em [2], ndo é sempre
claro qual o “melhor” corte local a se incorporar ao programa, e exemplos patologicos
como o do grafo de Clebsch mostram que certas estruturas apresentam tanta rigidez com
relacdo a cortes locais que adicionar milhares de restricdes de cortes locais pode ser muito
mais ineficiente que uma tnica restricdo bem escolhida. Suspeitamos que uma classificacio
mais eficiente de certos exemplos extremais advindos de grafos de Cayley e o estudo
da Conjectura 2.4 para certas classes de grafos pseudoaleatorios pode ser 1util em novas
frentes de avanco para a conjectura principal.

3.3 Consideracoes sobre software e questoes
numéricas

O método de algebras de flag foi originalmente introduzido por Razborov em um
contexto muito mais geral que de grafos, na linguagem da Teoria dos Modelos Finitos. De
fato, ndo é dificil generalizar a descricdo pratica desse capitulo para contextos como de
hipergrafos, digrafos, grafos com coloracdo, permutacdes, entre varios outros modelos.

Apesar disso, ainda ndo ha uma implementacdo “padrdo” das algebras de flag. O
software flagmatic (https://lidicky.name/flagmatic/) é possivelmente a implementacio
mais acessivel e tem sido usada com éxito em problemas do tipo Turan. Ademais, o software
flagmatic ja foi usado e testado com resultados prolificos em diversos problemas de densi-
dade em grafos e hipergrafos. Outras implementacdes podem ser encontradas facilmente e
tem sido usados com éxito em problemas de combinatéria extremal (ver [6, 7, 22]).

Nesse trabalho, optamos por utilizar o pacote flag-algebra-program-package (de-
senvolvido por Leonardo Nagami Coregliano e disponivel em https://github.com/
robertoparente/flag-algebra-program-package) para elaborar os programas, que é desen-
volvido inteiramente em C++ e foi usado para obter os resultados de [10]. A implementacao
esta disponivel em https://github.com/Marcelo-ML/flag-algebras.

Escolhemos esse pacote como base porque ele oferecia um nivel suficiente de abstracao
e otimizagao para certas propriedades como normalizagio e produto de densidades, além
de a documentacio e linguagem serem mais acessiveis nas fases iniciais desse trabalho.
Usamos o csdp para resolver os programas semidefinidos vindos da formulacdo em algebras
de flag. No futuro, consideraremos revisar os métodos utilizados e trabalhar com uma
distribui¢do do flagmatic.

Por fim, cabe ressaltar que muitas vezes os calculos néo sao feitos de forma exata,
e isso depende da implementacio utilizada. Ha métodos de arredondamento utilizados
(implementados pelo flagmatic), mas no caso da geracdo de cortes locais, arredondar os
resultados em ponto flutuante dos resultados do csdp incorreria em ainda mais tempo


https://github.com/Marcelo-ML/flag-algebras
https://lidicky.name/flagmatic/
https://github.com/robertoparente/flag-algebra-program-package
https://github.com/robertoparente/flag-algebra-program-package
https://github.com/Marcelo-ML/flag-algebras
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de execucdo para os programas. Como nesse trabalho nos preocupamos, principalmente,
com o detalhamento da implementacdo dos métodos de [2], ndo realizamos calculos de
forma exata. De fato, em [2] é fornecido um esbog¢o de prova para o regime de densidade
e(G) > (0.2—¢)n? para e = 10”8 (que depende dos erros maximos garantidos pela execucio
do csdp). A prova desse resultado utiliza um argumento de remocao de vértices de grau
baixo e também o Teorema 2.10.
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Capitulo 4

Restricoes de grau minimo

4.1 Grafos livres de triAngulos com grau minimo
alto

Na literatura que trata da Teoria Extremal dos Grafos, o estudo de grafos livres de
certos subgrafos com grau minimo limitado inferiormente merece atencao especial. Um dos
teoremas mais fundamentais nesse sentido é o seguinte teorema de Andrasfai, Erdés e Sos:

Teorema 4.1 ([1]). Sejar > 2 e G um grafo livre de K, ; com n vértices. Se

3r—4
3r—1

6(G) >

n,

entdo G é r-partido.

Para grafos livres de triangulos, o Teorema 4.1 prova que, se um grafo livre de triangulos
tem grau minimo maior que §(G) > 2n/5, entdo ele é bipartido. Automaticamente, a
Conjectura 2.4 é verdadeira para grafos com grau minimo maior que 2n/5. Mas se §(G) >
2n/5, entio e(G) > n?/5, o que ja é coberto pelo Teorema 2.9. Portanto, é de se perguntar
se a condicdo de grau minimo pode ser relaxada, a fim de obter algum resultado que néo
seja trivial dada a restricio e(G) > n?/5.

Para obter esse relaxamento, usamos o seguinte importante resultado:

Teorema 4.2 ([5]). Seja G um grafo livre de triangulos com n vértices e 5(G) > n/3. Entdo
G é homomorfico a um grafo Vega.

Nao definimos precisamente os grafos Vega porque ndo os utilizaremos de forma
direta no trabalho (o menor deles tem 11 vértices e é conhecido como Grafo de Grotzsch).
Por ora, é suficiente dizer que os grafos Vega sdo supergrafos dos grafos de Andrasfai
que apresentaremos em breve, e veremos que, com condicdes levemente relaxadas, o
Teorema 4.2 possui analogos mais simples em termos de grafos de Andréasfai.

E interessante observar que a condicio do Teorema 4.2 ndo pode ser substituida por
6(G) > cn para nenhum ¢ < 1/3. De fato, para todo ¢ > 0, existem grafos de n vértices com
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grau minimo maior que (1/3 — &)n mas numero cromatico nao limitado (ver [15]).

De toda forma, a utilidade do Teorema 4.2 e de teoremas de homomorfismo relaciona-
dos é que, se temos um teorema que garante que G com uma quantidade muito grande
de vértices é homomorfico a H (que tem, digamos, 8 vértices), entdo pelo Teorema 2.6
sabemos exatamente como proceder para encontrar candidatos de conjuntos de arestas
que, removidos, podem realizar D(G).

4.1.1 Grafos de Andrasfai

Os grafos de Andrasfai sdo importantes estruturas no estudo de propriedade de estabi-
lidade em grafos livres de tridngulos e sao definidos da seguinte forma.

Definicao 4.3. Seja d > 1 um inteiro positivo. O grafo de Andrasfai F; é o grafo com
vértices {0,1,...,3d — 2} (vistos mddulo 3d — 1) e arestas entre i e i + d + j para cada
i€{0,1,...,3d —2}ecadaje{0,1,..,d — 1}

Uma forma de representar os grafos de Andrasfai é colocar os vértices em uma circun-
feréncia em sentido horario como vértices de (3d — 1)-agono regular e ligar cada vértice
com os d vértices mais distantes (ver Figura 4.1).

©

LA K]
XA
"AA

.“v A 4‘.‘\\

9
7

F

Figura 4.1: Grafos de Andrasfai para d € {1, 2,3, 4}. Observe que F; é d-regular e livre de triangulos.

Os Teoremas 4.4 e 4.5 formam a caracterizacdo estrutural que estamos procurando.

Teorema 4.4 ([19]). Seja G um grafo livre de triangulos com n vértices e grau minimo maior
que 10n/29. Entdo G — Fy.

Teorema 4.5 ([9]). Seja G um grafo livre de triangulos com n vértices e y(G) < 3. Se

3(G) > ;;%lzn para algumd > 1, entdo G — Fy.

Do Teorema 4.5, segue diretamente que se G é um grafo livre de tridngulos com n
vértices satisfazendo §(G) > n/3 e y(G) < 3, entdo G é homomorfico a algum F;.

4.2 A Conjectura 2.4 para grafos de Andrasfai

Em [3], os autores verificam o seguinte resultado para a Conjectura 2.11:

Teorema 4.6 ([3]). Se um grafo G com n vértices é homomorfico a um grafo de Andrasfai F;
para algum d > 1, entdo existe X C V(G) com |X| < |n/2] ee(G[X]) < n?/50.
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Para isso, os autores utilizaram uma representagiao geométrica de grafos de Andrasfai
como subgrafos finitos de um grafo infinito com vértices no circulo unitario, e o conjunto
X é escolhido também de forma geométrica, como pontos em um intervalo no circulo
com os vértices de G.

Inspirados nessa interpretacdo geométrica de grafos de Andrasfai, provamos o seguinte
resultado nessa secio:

Teorema 4.7. Seja G um grafo livre de triangulos isomorfo a F; para algum d > 1. Entao G
satisfaz a Conjectura 2.4 se alguma das condigdes abaixo vale:

1. d <3;

2. Cada uma das 3d — 1 classes de G tem tamanho no maximo %lGL

4.2.1 Condicao 1

Inicialmente, verificamos um lema geral sobre parti¢ées do conjunto de arestas em
grafos livres de triangulos.

Lema 4.8. Seja G um grafo e suponha que existem E;, E5, E3, E4, Es C E, dois a dois disjuntos,
tais que G — E; é bipartido para cadai € {1, 2,3,4,5}. Entao G satisfaz a Conjectura 2.4.

Demonstragao. Se e(G) > n? /5, entdo o resultado segue do Teorema 2.9. Por outro lado, se
e(G) < n?/5, entdo

2
) n
5min{|Ey|, |Esl, |E3l, |[Egl, |E5|} < |Eq| + |Eo| + |Es| + |Eg| + |E5| < e(G) < =

e para |Ej| = min{|E;|, |E,|, |Es|, |El, |Es|} temos G — E; bipartido com |Ej| < n?/5. H

Dessa forma, se apresentarmos uma tal particao para Fy, ela também valera para qual-
quer blow-up de F, independentemente dos tamanhos relativos entre as classes no blow-up.
A Figura 4.2 mostra uma tal particdo para F3, em que cada cor estd associada a um E;.

Figura 4.2
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Corolario 4.9. Se G ¢ livre de triangulos e 5(G) > 4n/11, entdo G satisfaz a Conjectura 2.4.

Apesar disso, ndo é facil generalizar a estratégia de particio de E(G) do Lema 4.8, porque
essa propriedade nao ocorre em geral em grafos livres de triangulos. De fato, é facil verificar
que essa particdo nio existe para F, e, portanto, nio existe para nenhum F; com d > 4.

4.2.2 Condicao 2

Na Secdo 4.2.1, utilizamos a estratégia de tentar encontrar conjuntos explicitos de
arestas F C E(F,) tais que F;— F é bipartido e transferir as propriedades dessas arestas para
blow-ups de F;. Pelo Teorema 2.6, essa estratégia ndo é somente razoavel, mas suficiente
para encontrar conjuntos de arestas de grafos H — F; que realizem D(H).

Assim, seguimos a estratégia geral de procurar, em Fy, conjuntos de arestas pequenos
cuja remocao torna Fy bipartido. E facil ver que os conjuntos independentes maximais de
F; sdo conjuntos de vértices consecutivos (médulo 3d — 1), e portanto é natural considerar
conjuntos que possuem a maior quantidade possivel de vértices consecutivos, ou seja,
com uma das partes contendo os vértices de 0 a [3d/2]| — 1 e a outra parte contendo os
vértices de [3d/2] a 3d — 1.

Teorema 4.10. Sejad > 1. Entdo

D(Fy) <

d2
%)
Demonstragdo. Basta apresentar uma biparticdo {A, B} de F; com e(G[A]),e(G[B]) =

|d?/4|. Considere a seguinte biparticio V(F;) = A U B em que cada parte é formada
por (aproximadamente) metade dos vértices de Fy:

V(G) =10,1,...,|(3d — 1)/2] — 1}U{3d — 2,3d — 3,..., |(3d — 1)/2]}.

Figura 4.3: Exemplo da biparticdo parad = 5.

Em A, as arestas que ligam vértices a uma distancia ¢ (percorrida no circulo no sentido
mais proximo) sdo |(3d — 1)/2| — ¢, para cada ¢ € {d,d + 1,...,|A| — 1} (ver Figura 4.3).
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Fazendo a contagem analoga para B, obtemos:

e(GLA]) + e(G[B]) = [3"‘1J—s+ Z_ [3d‘1] ¢

f d— d+1 d—17[d+1
:E(l 2 H 2 J+[ 2 ” 2 ])
Se d é impar, temos e(G[A]) + e(G[B]) = 2(d? — 1)/8 = |d?/4]. Se d é par, temos e(G[A]) +
e(G[B]) = 2d%/8 = |d?/4].

O
Finalmente, se toda classe de G tem tamanho no maximo 2|G|/5d, segue que

4G*  4? 4GP G/
DG) < D(F) - =2 & 2 _
(G) < D(F) 25d2 — 4 2542 25

O resultado de 2 pode ser melhorado utilizando os mesmos conjuntos de arestas mas
tomando conjuntos de vértices gerados rotacionando a linha que separa as partes do
subgrafo bipartido final. No geral, desejamos incluir pesos xg, X1, .., X343_3 € [0, 1] com
21350_ 2 x; = 1 e modelar o nimero de arestas removidas como uma expressao da forma
Yijer%ixj, em que F C E(Fy) € tal que Fy — F é bipartido.

Contudo, a regido factivel do programa resultante nao é concava. Uma forma facil de
verificar isso é tomando U C V(Fy) tal que G[U] é isomoérfico a Cs e a atribui¢io

seveU,
sev &U.

r=1

5
x,=0
Essa atribuicdo equivale a um blow-up de F; que também é um blow-up balanceado de Cs,
e que nio pode ser tornado bipartido pela delecio de menos que n?/5 arestas. Dessa forma,
se a Conjectura 2.4 for verdadeira, todas essas atribuicdes sdo extremos locais para os
problemas de otimizacdo razoaveis que podem ser considerados. Para valores pequenos de
d, verificamos computacionalmente que, de fato, esses sdo os unicos extremos locais.
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Capitulo 5

Conclusao

Nesse trabalho, apresentamos a Conjectura 2.4 de Erd8s, que completa 50 anos em
aberto no ano de 2025. No Capitulo 2, estudamos resultados parciais classicos para a
conjectura, utilizando contagens e simetrizacdo que remontam as décadas de 1970 e
1980. Nos Capitulos 3 e 4, propusemos estudar a Conjectura 2.4 utilizando técnicas mais
modernas de Teoria Extremal dos Grafos: as algebras de flag de Razborov e os teoremas de
homomorfismo em grafos livres de triangulos com grau minimo alto.

Os métodos utilizados no Capitulo 3 prometem ser bastante robustos e o Teorema 3.5
de [2] cobre os resultados do Capitulo 4, uma vez que grafos com grau minimo maior
que n/3 tem mais de n?/6 arestas.

Nao obstante, ndo se descarta a importancia do estudo continuado de propriedades
estruturais de blow-ups de Andrasfai para a Conjectura 2.4, em particular para compreender
a dindmica do problema em blow-ups de grafos bem estruturados ou os exemplos extremais
abaixo do limiar de arestas n?/5 (que nio é coberto pelo Teorema 2.10).

Por fim, destaca-se mais uma vez a relacdo entre as Conjecturas 2.4 e 2.11. Recentemente,
o método de algebras de flag também foi utilizado por Razborov para obter resultados
parciais para a Conjectura 2.11 (trocando a constante 1/50 por 27/1024) [27]. Dessa forma,
espera-se que os produtos desse trabalho possam continuar a ser utilizados em problemas
relacionados da combinatdria extremal.
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